Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Weighted inversion of general Dirichlet series


Authors: Helge Glöckner and Lutz G. Lucht
Journal: Trans. Amer. Math. Soc. 366 (2014), 3275-3293
MSC (2010): Primary 11M41; Secondary 30B50, 30J99, 46H99
DOI: https://doi.org/10.1090/S0002-9947-2013-06018-7
Published electronically: November 5, 2013
MathSciNet review: 3180747
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Inversion theorems of Wiener type are essential tools in analysis and number theory. We derive a weighted version of an inversion theorem of Wiener type for general Dirichlet series from that of Edwards from 1957, and we outline an alternative proof based on the duality theory of convex cones and extension techniques for characters of semigroups. Variants and arithmetical applications are described, including the case of multidimensional weighted generalized Dirichlet series.


References [Enhancements On Off] (What's this?)

  • [1] Christian Berg, Jens Peter Reus Christensen, and Paul Ressel, Harmonic analysis on semigroups, Graduate Texts in Mathematics, vol. 100, Springer-Verlag, New York, 1984. Theory of positive definite and related functions. MR 747302 (86b:43001)
  • [2] Arne Brøndsted, An introduction to convex polytopes, Graduate Texts in Mathematics, vol. 90, Springer-Verlag, New York, 1983. MR 683612 (84d:52009)
  • [3] H. G. Dales and H. V. Dedania, Weighted convolution algebras on subsemigroups of the real line, Dissertationes Math. (Rozprawy Mat.) 459 (2009), 60. MR 2477218 (2010d:46059), https://doi.org/10.4064/dm459-0-1
  • [4] J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press, New York, 1960. MR 0120319 (22 #11074)
  • [5] D. A. Edwards, On absolutely convergent Dirichlet series, Proc. Amer. Math. Soc. 8 (1957), 1067-1074. MR 0096086 (20 #2583)
  • [6] G. Fendler, K. Gröchenig, M. Leinert, J. Ludwig, and C. Molitor-Braun, Weighted group algebras on groups of polynomial growth, Math. Z. 245 (2003), no. 4, 791-821. MR 2020712 (2004k:43008), https://doi.org/10.1007/s00209-003-0571-6
  • [7] Gero Fendler, Karlheinz Gröchenig, and Michael Leinert, Symmetry of weighted $ L^1$-algebras and the GRS-condition, Bull. London Math. Soc. 38 (2006), no. 4, 625-635. MR 2250755 (2007f:43002), https://doi.org/10.1112/S0024609306018777
  • [8] H. Glöckner, Remarks concerning a lemma of Lucht and Reifenrath, Draft of December 9, 2005; unpublished.
  • [9] Helge Glöckner, Lutz G. Lucht, and Štefan Porubský, General Dirichlet series, arithmetic convolution equations and Laplace transforms, Studia Math. 193 (2009), no. 2, 109-129. MR 2515515 (2010f:46075), https://doi.org/10.4064/sm193-2-2
  • [10] Arthur Goodman and D. J. Newman, A Wiener type theorem for Dirichlet series, Proc. Amer. Math. Soc. 92 (1984), no. 4, 521-527. MR 760938 (86a:30005), https://doi.org/10.2307/2045419
  • [11] Peter Gritzmann and Victor Klee, Separation by hyperplanes in finite-dimensional vector spaces over Archimedean ordered fields, J. Convex Anal. 5 (1998), no. 2, 279-301. MR 1670356 (99k:46012)
  • [12] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 6th ed., Oxford University Press, Oxford, 2008. Revised by D. R. Heath-Brown and J. H. Silverman; With a foreword by Andrew Wiles. MR 2445243 (2009i:11001)
  • [13] E. Heppner and W. Schwarz, Benachbarte multiplikative Funktionen, Studies in pure mathematics, Birkhäuser, Basel, 1983, pp. 323-336 (German). MR 820232 (87h:11097)
  • [14] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin, 1979. Structure of topological groups, integration theory, group representations. MR 551496 (81k:43001)
  • [15] Edwin Hewitt and J. H. Williamson, Note on absolutely convergent Dirichlet series, Proc. Amer. Math. Soc. 8 (1957), 863-868. MR 0090680 (19,851b)
  • [16] Edwin Hewitt and Herbert S. Zuckerman, The $ l_1$-algebra of a commutative semigroup, Trans. Amer. Math. Soc. 83 (1956), 70-97. MR 0081908 (18,465b)
  • [17] John Knopfmacher, Abstract analytic number theory, 2nd ed., Dover Books on Advanced Mathematics, Dover Publications Inc., New York, 1990. MR 1068138 (91d:11110)
  • [18] Yulia Kuznetsova and Carine Molitor-Braun, Harmonic analysis of weighted $ L^p$-algebras, Expo. Math. 30 (2012), no. 2, 124-153. MR 2928197, https://doi.org/10.1016/j.exmath.2012.01.002
  • [19] Serge Lang, Algebra, 3rd ed., Graduate Texts in Mathematics, vol. 211, Springer-Verlag, New York, 2002. MR 1878556 (2003e:00003)
  • [20] P. Lévy, Sur la convergence absolue des séries de Fourier, C.R. Acad. Sci. Paris 196 (1933), 463-464; Compositio Math. 1 (1934), 1-14.
  • [21] Lutz Lucht, An application of Banach algebra techniques to multiplicative functions, Math. Z. 214 (1993), no. 2, 287-295. MR 1240890 (94g:11072), https://doi.org/10.1007/BF02572405
  • [22] Lutz G. Lucht, Banach algebra techniques in the theory of arithmetic functions, Acta Math. Univ. Ostrav. 16 (2008), no. 1, 45-56. MR 2498636 (2009k:11150)
  • [23] Lutz G. Lucht, A survey of Ramanujan expansions, Int. J. Number Theory 6 (2010), no. 8, 1785-1799. MR 2755471 (2011m:11195), https://doi.org/10.1142/S1793042110003800
  • [24] L.G. Lucht and K. Reifenrath, Weighted Wiener-Lévy theorems, in: Analytic Number Theory. Proceedings of a Conference in Honor of Heini Halberstam, Urbana-Champaign, 1995, Vol. 2, Birkhäuser, Boston 1996, pp. 607-619.
  • [25] Karl-Hermann Neeb, Holomorphy and convexity in Lie theory, de Gruyter Expositions in Mathematics, vol. 28, Walter de Gruyter & Co., Berlin, 2000. MR 1740617 (2001j:32020)
  • [26] K. Reifenrath, Gewichtete Wiener-Lévy-Sätze und arithmetische Halbgruppen, Dissertation, TU Clausthal 1995.
  • [27] Kenneth A. Ross, Extending characters on semigroups, Proc. Amer. Math. Soc. 12 (1961), 988-990. MR 0132793 (24 #A2629)
  • [28] W. Rudin, Real and Complex Analysis, McGraw-Hill, London, 1970.
  • [29] Walter Rudin, Functional analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Inc., New York, 1991. MR 0365062
  • [30] H. H. Schaefer and M. P. Wolff, Topological vector spaces, 2nd ed., Graduate Texts in Mathematics, vol. 3, Springer-Verlag, New York, 1999. MR 1741419 (2000j:46001)
  • [31] Wolfgang Schwarz and Jürgen Spilker, Arithmetical functions, London Mathematical Society Lecture Note Series, vol. 184, Cambridge University Press, Cambridge, 1994. An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties. MR 1274248 (96b:11001)
  • [32] Jürgen Spilker and Wolfgang Schwarz, Wiener-Lévy-Sätze für absolut konvergente Reihen, Arch. Math. (Basel) 32 (1979), no. 3, 267-275 (German). MR 541625 (81d:32002), https://doi.org/10.1007/BF01238499
  • [33] Bit Shun Tam, A note on polyhedral cones, J. Austral. Math. Soc. Ser. A 22 (1976), no. 4, 456-461. MR 0429954 (55 #2962)
  • [34] H. Weyl, Elementare Theorie der konvexen Polyeder, Comment. Math. Helv. 7 (1934), no. 1, 290-306 (German). MR 1509514, https://doi.org/10.1007/BF01292722
  • [35] Norbert Wiener, Tauberian theorems, Ann. of Math. (2) 33 (1932), no. 1, 1-100. MR 1503035, https://doi.org/10.2307/1968102

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11M41, 30B50, 30J99, 46H99

Retrieve articles in all journals with MSC (2010): 11M41, 30B50, 30J99, 46H99


Additional Information

Helge Glöckner
Affiliation: Institut für Mathematik, Universität Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
Email: glockner@math.upb.de

Lutz G. Lucht
Affiliation: Institut für Mathematik, Technische Universität Clausthal, Erzstr. 1, D-38678 Clausthal-Zellerfeld, Germany
Email: lg.lucht@cintech.de

DOI: https://doi.org/10.1090/S0002-9947-2013-06018-7
Keywords: General Dirichlet series, weighted inversion, Banach algebra, dual cone, rational vector space, separation theorem, Hahn-Banach theorem, rational polytope, semigroup algebra
Received by editor(s): December 3, 2011
Received by editor(s) in revised form: August 3, 2012, and November 13, 2012
Published electronically: November 5, 2013
Additional Notes: The first author was supported by Deutsche Forschungsgemeinschaft, GZ: GL 357/5–2.
Article copyright: © Copyright 2013 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society