Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Random Schrödinger operators on long boxes, noise explosion and the GOE


Authors: Benedek Valkó and Bálint Virág
Journal: Trans. Amer. Math. Soc. 366 (2014), 3709-3728
MSC (2010): Primary 60B20, 81Q10
DOI: https://doi.org/10.1090/S0002-9947-2014-05974-6
Published electronically: February 6, 2014
MathSciNet review: 3192614
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is conjectured that the eigenvalues of random Schrödinger operators at the localization transition in dimensions $ d\ge 2$ behave like the eigenvalues of the Gaussian Orthogonal Ensemble (GOE). We show that there are sequences of $ n\times m$ boxes with $ 1\ll m\ll n$ so that the eigenvalues in low disorder converge to Sine$ _1$, the limiting eigenvalue process of the GOE. For the GOE case, this is the first example where Wigner's famous prediction is proven rigorously: we exhibit a complex system whose eigenvalues behave like those of random matrices.


References [Enhancements On Off] (What's this?)

  • [1] B. Altshuler and B. I. Shklovski (1986).
    Repulsion of energy levels and conductivity of metal samples.
    Sov. Phys. JETP, 64: 127-135.
  • [2] P. W. Anderson (1958).
    Absence of diffusion in certain random lattices.
    Phys. Rev., 109: 1492-1505.
  • [3] S. Bachmann and W. De Roeck, From the Anderson model on a strip to the DMPK equation and random matrix theory, J. Stat. Phys. 139 (2010), no. 4, 541-564. MR 2638927 (2011g:82132), https://doi.org/10.1007/s10955-010-9947-2
  • [4] O. Bohigas, M.-J. Giannoni, and C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52 (1984), no. 1, 1-4. MR 730191 (85f:58034), https://doi.org/10.1103/PhysRevLett.52.1
  • [5] Konstantin Efetov, Supersymmetry in disorder and chaos, Cambridge University Press, Cambridge, 1997. MR 1628498 (99m:82001)
  • [6] László Erdős, Benjamin Schlein, and Horng-Tzer Yau, Universality of random matrices and local relaxation flow, Invent. Math. 185 (2011), no. 1, 75-119. MR 2810797 (2012f:60020), https://doi.org/10.1007/s00222-010-0302-7
  • [7] László Erdős, Benjamin Schlein, Horng-Tzer Yau, and Jun Yin, The local relaxation flow approach to universality of the local statistics for random matrices, Ann. Inst. Henri Poincaré Probab. Stat. 48 (2012), no. 1, 1-46 (English, with English and French summaries). MR 2919197, https://doi.org/10.1214/10-AIHP388
  • [8] László Erdős, Horng-Tzer Yau, and Jun Yin, Rigidity of eigenvalues of generalized Wigner matrices, Adv. Math. 229 (2012), no. 3, 1435-1515. MR 2871147, https://doi.org/10.1016/j.aim.2011.12.010
  • [9] Stewart N. Ethier and Thomas G. Kurtz, Markov processes, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons Inc., New York, 1986. Characterization and convergence. MR 838085 (88a:60130)
  • [10] Olav Kallenberg, Foundations of modern probability, 2nd ed., Probability and its Applications (New York), Springer-Verlag, New York, 2002. MR 1876169 (2002m:60002)
  • [11] Nicholas M. Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, American Mathematical Society Colloquium Publications, vol. 45, American Mathematical Society, Providence, RI, 1999. MR 1659828 (2000b:11070)
  • [12] Rowan Killip and Mihai Stoiciu, Eigenvalue statistics for CMV matrices: from Poisson to clock via random matrix ensembles, Duke Math. J. 146 (2009), no. 3, 361-399. MR 2484278 (2009k:81087), https://doi.org/10.1215/00127094-2009-001
  • [13] Eugene Kritchevski, Benedek Valkó, and Bálint Virág, The scaling limit of the critical one-dimensional random Schrödinger operator, Comm. Math. Phys. 314 (2012), no. 3, 775-806. MR 2964774, https://doi.org/10.1007/s00220-012-1537-5
  • [14] Madan Lal Mehta, Random matrices, 3rd ed., Pure and Applied Mathematics (Amsterdam), vol. 142, Elsevier/Academic Press, Amsterdam, 2004. MR 2129906 (2006b:82001)
  • [15] Rudolf A. Römer and Hermann Schulz-Baldes, The random phase property and the Lyapunov spectrum for disordered multi-channel systems, J. Stat. Phys. 140 (2010), no. 1, 122-153. MR 2651442 (2011g:82058), https://doi.org/10.1007/s10955-010-9986-8
  • [16] H. Schulz-Baldes, Perturbation theory for Lyapunov exponents of an Anderson model on a strip, Geom. Funct. Anal. 14 (2004), no. 5, 1089-1117. MR 2105954 (2005g:47070), https://doi.org/10.1007/s00039-004-0484-5
  • [17] Daniel W. Stroock and S. R. Srinivasa Varadhan, Multidimensional diffusion processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 233, Springer-Verlag, Berlin, 1979. MR 532498 (81f:60108)
  • [18] Terence Tao and Van Vu, Random covariance matrices: universality of local statistics of eigenvalues, Ann. Probab. 40 (2012), no. 3, 1285-1315. MR 2962092, https://doi.org/10.1214/11-AOP648
  • [19] Benedek Valkó and Bálint Virág, Continuum limits of random matrices and the Brownian carousel, Invent. Math. 177 (2009), no. 3, 463-508. MR 2534097 (2011d:60023), https://doi.org/10.1007/s00222-009-0180-z
  • [20] E. P. Wigner (1957).
    Gatlinberg Conference on Neutron Physics, Oak Ridge National Laboratory Report, ORNL 2309: 59.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 60B20, 81Q10

Retrieve articles in all journals with MSC (2010): 60B20, 81Q10


Additional Information

Benedek Valkó
Affiliation: Department of Mathematics, University of Wisconsin-Madison, Madison,Wisconsin 53706
Email: valko@math.wisc.edu

Bálint Virág
Affiliation: Department of Mathematics, University of Toronto, Ontario, Canada M5S 2E4
Email: balint@math.toronto.edu

DOI: https://doi.org/10.1090/S0002-9947-2014-05974-6
Received by editor(s): December 13, 2011
Received by editor(s) in revised form: October 2, 2012
Published electronically: February 6, 2014
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society