Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Compact Kähler manifolds with automorphism groups of maximal rank


Author: De-Qi Zhang
Journal: Trans. Amer. Math. Soc. 366 (2014), 3675-3692
MSC (2010): Primary 32H50, 37C85, 32M05, 14J50, 32Q15
DOI: https://doi.org/10.1090/S0002-9947-2014-06227-2
Published electronically: March 5, 2014
MathSciNet review: 3192612
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For an automorphism group $ G$ on an $ n$-dimensional ($ n \ge 3$) normal projective variety or a compact Kähler manifold $ X$ so that $ G$ modulo its subgroup $ N(G)$ of null entropy elements is an abelian group of maximal rank $ n-1$, we show that $ N(G)$ is virtually contained in $ \mathrm {Aut}_0(X)$, the $ X$ is a quotient of a complex torus $ T$ and $ G$ is mostly descended from the symmetries on the torus $ T$, provided that both $ X$ and the pair $ (X, G)$ are minimal.


References [Enhancements On Off] (What's this?)

  • [1] Arnaud Beauville, Some remarks on Kähler manifolds with $ c_{1}=0$, Classification of algebraic and analytic manifolds (Katata, 1982) Progr. Math., vol. 39, Birkhäuser Boston, Boston, MA, 1983, pp. 1-26. MR 728605 (86c:32031)
  • [2] Caucher Birkar, Paolo Cascini, Christopher D. Hacon, and James McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405-468. MR 2601039 (2011f:14023), https://doi.org/10.1090/S0894-0347-09-00649-3
  • [3] Garrett Birkhoff, Linear transformations with invariant cones, Amer. Math. Monthly 74 (1967), 274-276. MR 0214605 (35 #5454)
  • [4] F. Campana, F. Wang and D.-Q. Zhang, Automorphism groups of positive entropy on projective threefolds, Trans. Amer. Math. Soc. 366 (2014), no. 3, 1621-1638. MR 3145744
  • [5] S. Cantat and A. Zeghib, Holomorphic actions of higher rank lattices in dimension three, Preprint 2009.
  • [6] Tien-Cuong Dinh and Nessim Sibony, Groupes commutatifs d'automorphismes d'une variété kählérienne compacte, Duke Math. J. 123 (2004), no. 2, 311-328 (French, with English and French summaries). MR 2066940 (2005g:32020), https://doi.org/10.1215/S0012-7094-04-12323-1
  • [7] Akira Fujiki, On automorphism groups of compact Kähler manifolds, Invent. Math. 44 (1978), no. 3, 225-258. MR 0481142 (58 #1285)
  • [8] Yujiro Kawamata, Minimal models and the Kodaira dimension of algebraic fiber spaces, J. Reine Angew. Math. 363 (1985), 1-46. MR 814013 (87a:14013), https://doi.org/10.1515/crll.1985.363.1
  • [9] JongHae Keum, Keiji Oguiso, and De-Qi Zhang, Conjecture of Tits type for complex varieties and theorem of Lie-Kolchin type for a cone, Math. Res. Lett. 16 (2009), no. 1, 133-148. MR 2480567 (2010e:14039)
  • [10] János Kollár and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti. Translated from the 1998 Japanese original. MR 1658959 (2000b:14018)
  • [11] David I. Lieberman, Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds, Fonctions de plusieurs variables complexes, III (Sém. François Norguet, 1975-1977), Lecture Notes in Math., vol. 670, Springer, Berlin, 1978, pp. 140-186. MR 521918 (80h:32056)
  • [12] Noboru Nakayama and De-Qi Zhang, Building blocks of étale endomorphisms of complex projective manifolds, Proc. Lond. Math. Soc. (3) 99 (2009), no. 3, 725-756. MR 2551469 (2011c:14040), https://doi.org/10.1112/plms/pdp015
  • [13] Noboru Nakayama and De-Qi Zhang, Polarized endomorphisms of complex normal varieties, Math. Ann. 346 (2010), no. 4, 991-1018. MR 2587100 (2011c:14103), https://doi.org/10.1007/s00208-009-0420-y
  • [14] Keiji Oguiso, Automorphisms of hyperkähler manifolds in the view of topological entropy, Algebraic geometry, Contemp. Math., vol. 422, Amer. Math. Soc., Providence, RI, 2007, pp. 173-185. MR 2296437 (2008a:14055), https://doi.org/10.1090/conm/422/08060
  • [15] Daniel Segal, Polycyclic groups, Cambridge Tracts in Mathematics, vol. 82, Cambridge University Press, Cambridge, 1983. MR 713786 (85h:20003)
  • [16] N. I. Shepherd-Barron and P. M. H. Wilson, Singular threefolds with numerically trivial first and second Chern classes, J. Algebraic Geom. 3 (1994), no. 2, 265-281. MR 1257323 (95h:14033)
  • [17] Joseph A. Wolf, Growth of finitely generated solvable groups and curvature of Riemanniann manifolds, J. Differential Geometry 2 (1968), 421-446. MR 0248688 (40 #1939)
  • [18] De-Qi Zhang, Automorphism groups and anti-pluricanonical curves, Math. Res. Lett. 15 (2008), no. 1, 163-183. MR 2367182 (2009f:14072)
  • [19] De-Qi Zhang, A theorem of Tits type for compact Kähler manifolds, Invent. Math. 176 (2009), no. 3, 449-459. MR 2501294 (2010d:32013), https://doi.org/10.1007/s00222-008-0166-2
  • [20] De-Qi Zhang, Dynamics of automorphisms on projective complex manifolds, J. Differential Geom. 82 (2009), no. 3, 691-722. MR 2534992 (2010k:14078)
  • [21] De-Qi Zhang, The $ g$-periodic subvarieties for an automorphism $ g$ of positive entropy on a compact Kähler manifold, Adv. Math. 223 (2010), no. 2, 405-415. MR 2565534 (2011a:32036), https://doi.org/10.1016/j.aim.2009.08.010
  • [22] De-Qi Zhang, Automorphism groups of positive entropy on minimal projective varieties, Adv. Math. 225 (2010), no. 5, 2332-2340. MR 2680167 (2011m:14070), https://doi.org/10.1016/j.aim.2010.04.022
  • [23] De-Qi Zhang, Algebraic varieties with automorphism groups of maximal rank, Math. Ann. 355 (2013), no. 1, 131-146. MR 3004578, https://doi.org/10.1007/s00208-012-0783-3

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 32H50, 37C85, 32M05, 14J50, 32Q15

Retrieve articles in all journals with MSC (2010): 32H50, 37C85, 32M05, 14J50, 32Q15


Additional Information

De-Qi Zhang
Affiliation: Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076
Email: matzdq@nus.edu.sg

DOI: https://doi.org/10.1090/S0002-9947-2014-06227-2
Keywords: Automorphism group, K\"ahler manifold, Tits alternative, topological entropy
Received by editor(s): August 23, 2012
Published electronically: March 5, 2014
Additional Notes: The author was supported by an ARF of NUS
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society