Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces


Authors: Gerard Kerkyacharian and Pencho Petrushev
Journal: Trans. Amer. Math. Soc. 367 (2015), 121-189
MSC (2010): Primary 58J35, 46E35; Secondary 42C15, 43A85
DOI: https://doi.org/10.1090/S0002-9947-2014-05993-X
Published electronically: June 18, 2014
MathSciNet review: 3271256
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Classical and nonclassical Besov and Triebel-Lizorkin spaces with complete range of indices are developed in the general setting of Dirichlet space with a doubling measure and local scale-invariant Poincaré inequality. This leads to a heat kernel with small time Gaussian bounds and Hölder continuity, which play a central role in this article. Frames with band limited elements of sub-exponential space localization are developed, and frame and heat kernel characterizations of Besov and Triebel-Lizorkin spaces are established. This theory, in particular, allows the development of Besov and Triebel-Lizorkin spaces and their frame and heat kernel characterization in the context of Lie groups, Riemannian manifolds, and other settings.


References [Enhancements On Off] (What's this?)

  • [1] Sergio Albeverio, Theory of Dirichlet forms and applications, Lectures on probability theory and statistics (Saint-Flour, 2000) Lecture Notes in Math., vol. 1816, Springer, Berlin, 2003, pp. 1-106. MR 2009816 (2005a:60120), https://doi.org/10.1007/3-540-44922-1
  • [2] M. Biroli and U. Mosco, A Saint-Venant type principle for Dirichlet forms on discontinuous media, Ann. Mat. Pura Appl. (4) 169 (1995), 125-181 (English, with English and Italian summaries). MR 1378473 (97b:35082), https://doi.org/10.1007/BF01759352
  • [3] Marco Biroli and Umberto Mosco, Sobolev inequalities on homogeneous spaces, Potential Anal. 4 (1995), no. 4, 311-324. Potential theory and degenerate partial differential operators (Parma). MR 1354886 (96i:46034b), https://doi.org/10.1007/BF01053449
  • [4] Nicolas Bouleau and Francis Hirsch, Dirichlet forms and analysis on Wiener space, de Gruyter Studies in Mathematics, vol. 14, Walter de Gruyter & Co., Berlin, 1991. MR 1133391 (93e:60107)
  • [5] Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin, 1971 (French). Étude de certaines intégrales singulières. MR 0499948 (58 #17690)
  • [6] T. Coulhon, G. Kerkyacharian, and P. Petrushev, Heat Kernel Generated Frames in the Setting of Dirichlet Spaces, J. Fourier Anal. Appl. 18 (2012), no. 5, 995-1066. MR 2970038, https://doi.org/10.1007/s00041-012-9232-7
  • [7] Thierry Coulhon and Adam Sikora, Gaussian heat kernel upper bounds via the Phragmén-Lindelöf theorem, Proc. Lond. Math. Soc. (3) 96 (2008), no. 2, 507-544. MR 2396848 (2011a:35206), https://doi.org/10.1112/plms/pdm050
  • [8] E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1989. MR 990239 (90e:35123)
  • [9] Xuan Thinh Duong and Lixin Yan, Spectral multipliers for Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, J. Math. Soc. Japan 63 (2011), no. 1, 295-319. MR 2752441 (2012d:42028)
  • [10] R. E. Edwards, Fourier series. Vol. 2, 2nd ed., Graduate Texts in Mathematics, vol. 85, Springer-Verlag, New York, 1982. A modern introduction. MR 667519 (83k:42001)
  • [11] Masatoshi Fukushima, Yoichi Oshima, and Masayoshi Takeda, Dirichlet forms and symmetric Markov processes, Second revised and extended edition, de Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 2011. MR 2778606 (2011k:60249)
  • [12] Michael Frazier and Björn Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), no. 4, 777-799. MR 808825 (87h:46083), https://doi.org/10.1512/iumj.1985.34.34041
  • [13] Michael Frazier and Björn Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34-170. MR 1070037 (92a:46042), https://doi.org/10.1016/0022-1236(90)90137-A
  • [14] Michael Frazier, Björn Jawerth, and Guido Weiss, Littlewood-Paley theory and the study of function spaces, CBMS Regional Conference Series in Mathematics, vol. 79, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1991. MR 1107300 (92m:42021)
  • [15] Daryl Geller and Isaac Z. Pesenson, Band-limited localized Parseval frames and Besov spaces on compact homogeneous manifolds, J. Geom. Anal. 21 (2011), no. 2, 334-371. MR 2772076 (2012c:43013), https://doi.org/10.1007/s12220-010-9150-3
  • [16] Loukas Grafakos, Liguang Liu, and Dachun Yang, Vector-valued singular integrals and maximal functions on spaces of homogeneous type, Math. Scand. 104 (2009), no. 2, 296-310. MR 2542655 (2010g:42053)
  • [17] A. A. Grigoryan, The heat equation on noncompact Riemannian manifolds, Mat. Sb. 182 (1991), no. 1, 55-87 (Russian); English transl., Math. USSR-Sb. 72 (1992), no. 1, 47-77. MR 1098839 (92h:58189)
  • [18] Alexander Grigor'yan, Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, vol. 47, American Mathematical Society, Providence, RI, 2009. MR 2569498 (2011e:58041)
  • [19] Pavel Gyrya and Laurent Saloff-Coste, Neumann and Dirichlet heat kernels in inner uniform domains, Astérisque 336 (2011), viii+144 (English, with English and French summaries). MR 2807275 (2012m:35117)
  • [20] Yongsheng Han, Detlef Müller, and Dachun Yang, Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type, Math. Nachr. 279 (2006), no. 13-14, 1505-1537. MR 2269253 (2007g:42035), https://doi.org/10.1002/mana.200610435
  • [21] Yongsheng Han, Detlef Müller, and Dachun Yang, A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carathéodory spaces, Abstr. Appl. Anal. , posted on (2008), Art. ID 893409, 250. MR 2485404 (2010c:46082), https://doi.org/10.1155/2008/893409
  • [22] Steve Hofmann, Guozhen Lu, Dorina Mitrea, Marius Mitrea, and Lixin Yan, Hardy spaces associated to non-negative self-adjoint operators satisfying Davies-Gaffney estimates, Mem. Amer. Math. Soc. 214 (2011), no. 1007, vi+78. MR 2868142, https://doi.org/10.1090/S0065-9266-2011-00624-6
  • [23] Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035 (85g:35002a)
  • [24] Kamen Ivanov, Pencho Petrushev, and Yuan Xu, Sub-exponentially localized kernels and frames induced by orthogonal expansions, Math. Z. 264 (2010), no. 2, 361-397. MR 2574981 (2011d:42070), https://doi.org/10.1007/s00209-008-0469-4
  • [25] Kamen Ivanov, Pencho Petrushev, and Yuan Xu, Decomposition of spaces of distributions induced by tensor product bases, J. Funct. Anal. 263 (2012), no. 5, 1147-1197. MR 2943727, https://doi.org/10.1016/j.jfa.2012.06.006
  • [26] Renjin Jiang and Dachun Yang, Orlicz-Hardy spaces associated with operators satisfying Davies-Gaffney estimates, Commun. Contemp. Math. 13 (2011), no. 2, 331-373. MR 2794490 (2012e:42040), https://doi.org/10.1142/S0219199711004221
  • [27] G. Kerkyacharian, P. Petrushev, D. Picard, and Yuan Xu, Decomposition of Triebel-Lizorkin and Besov spaces in the context of Laguerre expansions, J. Funct. Anal. 256 (2009), no. 4, 1137-1188. MR 2488337 (2010c:42043), https://doi.org/10.1016/j.jfa.2008.09.015
  • [28] George Kyriazis, Pencho Petrushev, and Yuan Xu, Jacobi decomposition of weighted Triebel-Lizorkin and Besov spaces, Studia Math. 186 (2008), no. 2, 161-202. MR 2407973 (2010c:42044), https://doi.org/10.4064/sm186-2-3
  • [29] G. Kyriazis, P. Petrushev, and Yuan Xu, Decomposition of weighted Triebel-Lizorkin and Besov spaces on the ball, Proc. Lond. Math. Soc. (3) 97 (2008), no. 2, 477-513. MR 2439670 (2010e:46031), https://doi.org/10.1112/plms/pdn010
  • [30] Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153-201. MR 834612 (87f:58156), https://doi.org/10.1007/BF02399203
  • [31] Patrick Maheux, Estimations du noyau de la chaleur sur les espaces homogènes, J. Geom. Anal. 8 (1998), no. 1, 65-96 (French, with English summary). MR 1704569 (2000e:43007), https://doi.org/10.1007/BF02922109
  • [32] Detlef Müller and Dachun Yang, A difference characterization of Besov and Triebel-Lizorkin spaces on RD-spaces, Forum Math. 21 (2009), no. 2, 259-298. MR 2503306 (2010b:42031), https://doi.org/10.1515/FORUM.2009.013
  • [33] F. J. Narcowich, P. Petrushev, and J. D. Ward, Localized tight frames on spheres, SIAM J. Math. Anal. 38 (2006), no. 2, 574-594 (electronic). MR 2237162 (2007k:42084), https://doi.org/10.1137/040614359
  • [34] F. Narcowich, P. Petrushev, and J. Ward, Decomposition of Besov and Triebel-Lizorkin spaces on the sphere, J. Funct. Anal. 238 (2006), no. 2, 530-564. MR 2253732 (2007i:46033), https://doi.org/10.1016/j.jfa.2006.02.011
  • [35] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931-954. MR 0100158 (20 #6592)
  • [36] El Maati Ouhabaz, Analysis of heat equations on domains, London Mathematical Society Monographs Series, vol. 31, Princeton University Press, Princeton, NJ, 2005. MR 2124040 (2005m:35001)
  • [37] Jaak Peetre, New thoughts on Besov spaces, Mathematics Department, Duke University, Durham, N.C., 1976. Duke University Mathematics Series, No. 1. MR 0461123 (57 #1108)
  • [38] Pencho Petrushev and Yuan Xu, Localized polynomial frames on the interval with Jacobi weights, J. Fourier Anal. Appl. 11 (2005), no. 5, 557-575. MR 2182635 (2006h:42012), https://doi.org/10.1007/s00041-005-4072-3
  • [39] Pencho Petrushev and Yuan Xu, Localized polynomial frames on the ball, Constr. Approx. 27 (2008), no. 2, 121-148. MR 2336420 (2008h:42076), https://doi.org/10.1007/s00365-007-0678-9
  • [40] Pencho Petrushev and Yuan Xu, Decomposition of spaces of distributions induced by Hermite expansions, J. Fourier Anal. Appl. 14 (2008), no. 3, 372-414. MR 2399106 (2009d:42060), https://doi.org/10.1007/s00041-008-9019-z
  • [41] Michael Reed and Barry Simon, Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York, 1972. MR 0493419 (58 #12429a)
  • [42] Derek W. Robinson, Elliptic operators and Lie groups, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 1991. Oxford Science Publications. MR 1144020 (92m:58133)
  • [43] L. Saloff-Coste, A note on Poincaré, Sobolev, and Harnack inequalities, Internat. Math. Res. Notices 2 (1992), 27-38. MR 1150597 (93d:58158), https://doi.org/10.1155/S1073792892000047
  • [44] Laurent Saloff-Coste, Aspects of Sobolev-type inequalities, London Mathematical Society Lecture Note Series, vol. 289, Cambridge University Press, Cambridge, 2002. MR 1872526 (2003c:46048)
  • [45] L. Saloff-Coste, Parabolic Harnack inequality for divergence-form second-order differential operators, Potential Anal. 4 (1995), no. 4, 429-467. Potential theory and degenerate partial differential operators (Parma). MR 1354894 (96m:35031), https://doi.org/10.1007/BF01053457
  • [46] L. Saloff-Coste and D. W. Stroock, Opérateurs uniformément sous-elliptiques sur les groupes de Lie, J. Funct. Anal. 98 (1991), no. 1, 97-121 (French, with English summary). MR 1111195 (92k:58264), https://doi.org/10.1016/0022-1236(91)90092-J
  • [47] Elias M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy; Monographs in Harmonic Analysis, III. MR 1232192 (95c:42002)
  • [48] Karl-Theodor Sturm, Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and $ L^p$-Liouville properties, J. Reine Angew. Math. 456 (1994), 173-196. MR 1301456 (95i:31003), https://doi.org/10.1515/crll.1994.456.173
  • [49] Karl-Theodor Sturm, Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math. 32 (1995), no. 2, 275-312. MR 1355744 (97b:35003)
  • [50] K. T. Sturm, Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl. (9) 75 (1996), no. 3, 273-297. MR 1387522 (97k:31010)
  • [51] Karl-Theodor Sturm, The geometric aspect of Dirichlet forms, New directions in Dirichlet forms, AMS/IP Stud. Adv. Math., vol. 8, Amer. Math. Soc., Providence, RI, 1998, pp. 233-277. MR 1652282 (99j:31014)
  • [52] G. Szegö, Orthogonal Polynomials, Fourth edition, Amer. Math. Soc. Colloq. Publ. Vol. 23, Amer. Math. Soc., Providence, 1975. MR 0372517
  • [53] Hans Triebel, Interpolation theory, function spaces, differential operators, North-Holland Mathematical Library, vol. 18, North-Holland Publishing Co., Amsterdam, 1978. MR 503903 (80i:46032b)
  • [54] Hans Triebel, Theory of function spaces, Monographs in Mathematics, vol. 78, Birkhäuser Verlag, Basel, 1983. MR 781540 (86j:46026)
  • [55] N. Th. Varopoulos, L. Saloff-Coste, and T. Coulhon, Analysis and geometry on groups, Cambridge Tracts in Mathematics, vol. 100, Cambridge University Press, Cambridge, 1992. MR 1218884 (95f:43008)
  • [56] Dachun Yang and Yuan Zhou, New properties of Besov and Triebel-Lizorkin spaces on RD-spaces, Manuscripta Math. 134 (2011), no. 1-2, 59-90. MR 2745254 (2012a:46061), https://doi.org/10.1007/s00229-010- 0384-y

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 58J35, 46E35, 42C15, 43A85

Retrieve articles in all journals with MSC (2010): 58J35, 46E35, 42C15, 43A85


Additional Information

Gerard Kerkyacharian
Affiliation: Laboratoire de Probabilités et Modèles Aléatoires, CNRS-UMR 7599, Université Paris Diderot, Batiment Sophie Germain, Avenue de France, Paris 75013, France
Email: kerk@math.univ-paris-diderot.fr

Pencho Petrushev
Affiliation: Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208
Email: pencho@math.sc.edu

DOI: https://doi.org/10.1090/S0002-9947-2014-05993-X
Keywords: Heat kernel, functional calculus, frames, Besov spaces, Triebel-Lizorkin spaces
Received by editor(s): February 28, 2012
Received by editor(s) in revised form: October 9, 2012
Published electronically: June 18, 2014
Additional Notes: The second author was supported by NSF Grant DMS-1211528.
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society