Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Local Dirichlet forms, Hodge theory, and the Navier-Stokes equations on topologically one-dimensional fractals


Authors: Michael Hinz and Alexander Teplyaev
Journal: Trans. Amer. Math. Soc. 367 (2015), 1347-1380
MSC (2010): Primary 31E05, 60J45; Secondary 28A80, 31C25, 35J25, 35Q30, 46L87, 47F05, 58J65, 60J60, 81Q35
DOI: https://doi.org/10.1090/S0002-9947-2014-06203-X
Published electronically: April 30, 2014
Corrigendum: Trans. Amer. Math. Soc. 369 (2017), 6777-6778.
MathSciNet review: 3280047
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider finite energy and $ L^2$ differential forms associated with strongly local regular Dirichlet forms on compact connected topologically one-dimensional spaces. We introduce notions of local exactness and local harmonicity and prove the Hodge decomposition, which in our context says that the orthogonal complement to the space of all exact 1-forms coincides with the closed span of all locally harmonic 1-forms. Then we introduce a related Hodge Laplacian and define a notion of harmonicity for finite energy 1-forms. As a corollary, under a certain capacity-separation assumption, we prove that the space of harmonic 1-forms is nontrivial if and only if the classical Čech cohomology is nontrivial. In the examples of classical self-similar fractals these spaces typically are either trivial or infinitely dimensional. Finally, we study Navier-Stokes type models and prove that under our assumptions they have only steady state divergence free solutions. In particular, we solve the existence and uniqueness problem for the Navier-Stokes and Euler equations for a large class of fractals that are topologically one-dimensional but can have arbitrary Hausdorff and spectral dimensions.


References [Enhancements On Off] (What's this?)

  • [1] R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, tensor analysis, and applications, 2nd ed., Applied Mathematical Sciences, vol. 75, Springer-Verlag, New York, 1988. MR 960687 (89f:58001)
  • [2] Martin T. Barlow, Diffusions on fractals, Lectures on probability theory and statistics (Saint-Flour, 1995) Lecture Notes in Math., vol. 1690, Springer, Berlin, 1998, pp. 1-121. MR 1668115 (2000a:60148), https://doi.org/10.1007/BFb0092537
  • [3] Martin T. Barlow, Which values of the volume growth and escape time exponent are possible for a graph?, Rev. Mat. Iberoamericana 20 (2004), no. 1, 1-31. MR 2076770 (2005f:60144), https://doi.org/10.4171/RMI/378
  • [4] Martin T. Barlow and Richard F. Bass, Brownian motion and harmonic analysis on Sierpinski carpets, Canad. J. Math. 51 (1999), no. 4, 673-744. MR 1701339 (2000i:60083), https://doi.org/10.4153/CJM-1999-031-4
  • [5] Martin T. Barlow, Richard F. Bass, Takashi Kumagai, and Alexander Teplyaev, Uniqueness of Brownian motion on Sierpiński carpets, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 3, 655-701. MR 2639315 (2011i:60146)
  • [6] Martin T. Barlow, Richard F. Bass, and Takashi Kumagai, Stability of parabolic Harnack inequalities on metric measure spaces, J. Math. Soc. Japan 58 (2006), no. 2, 485-519. MR 2228569 (2007f:60064)
  • [7] Martin T. Barlow and Steven N. Evans, Markov processes on vermiculated spaces, Random walks and geometry, Walter de Gruyter GmbH & Co. KG, Berlin, 2004, pp. 337-348. MR 2087787 (2006b:60164)
  • [8] Martin T. Barlow, Alexander Grigor'yan, and Takashi Kumagai, On the equivalence of parabolic Harnack inequalities and heat kernel estimates, J. Math. Soc. Japan 64 (2012), no. 4, 1091-1146. MR 2998918, https://doi.org/10.2969/jmsj/06441091
  • [9] Richard F. Bass, A stability theorem for elliptic Harnack inequalities, J. Eur. Math. Soc. (JEMS) 15 (2013), no. 3, 857-876. MR 3085094, https://doi.org/10.4171/JEMS/379
  • [10] Gregory Berkolaiko and Peter Kuchment, Introduction to quantum graphs, Mathematical Surveys and Monographs, vol. 186, American Mathematical Society, Providence, RI, 2013. MR 3013208
  • [11] Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York, 1982. MR 658304 (83i:57016)
  • [12] Nicolas Bouleau and Francis Hirsch, Dirichlet forms and analysis on Wiener space, de Gruyter Studies in Mathematics, vol. 14, Walter de Gruyter & Co., Berlin, 1991. MR 1133391 (93e:60107)
  • [13] E. A. Carlen, S. Kusuoka, and D. W. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 2, suppl., 245-287 (English, with French summary). MR 898496 (88i:35066)
  • [14] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), no. 3, 428-517. MR 1708448 (2000g:53043), https://doi.org/10.1007/s000390050094
  • [15] Zhen-Qing Chen and Masatoshi Fukushima, Symmetric Markov processes, time change, and boundary theory, London Mathematical Society Monographs Series, vol. 35, Princeton University Press, Princeton, NJ, 2012. MR 2849840 (2012m:60176)
  • [16] A. J. Chorin and J. E. Marsden, A mathematical introduction to fluid mechanics, 2nd ed., Texts in Applied Mathematics, vol. 4, Springer-Verlag, New York, 1990. MR 1058010 (91e:76002)
  • [17] Kai Lai Chung, Lectures from Markov processes to Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 249, Springer-Verlag, New York, 1982. MR 648601 (84c:60091)
  • [18] F. Cipriani, D. Guido, T. Isola, J.-L. Sauvageot, Differential $ 1$-forms, their integrals and potential theory on the Sierpinski gasket, preprint ArXiv (2011).
  • [19] Fabio Cipriani and Jean-Luc Sauvageot, Derivations as square roots of Dirichlet forms, J. Funct. Anal. 201 (2003), no. 1, 78-120. MR 1986156 (2004e:46080), https://doi.org/10.1016/S0022-1236(03)00085-5
  • [20] Fabio Cipriani and Jean-Luc Sauvageot, Fredholm modules on P.C.F. self-similar fractals and their conformal geometry, Comm. Math. Phys. 286 (2009), no. 2, 541-558. MR 2472035 (2010d:58029), https://doi.org/10.1007/s00220-008-0673-4
  • [21] Samuel Eilenberg and Norman Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, New Jersey, 1952. MR 0050886 (14,398b)
  • [22] Ryszard Engelking, Dimension theory, North-Holland Publishing Co., Amsterdam, 1978. Translated from the Polish and revised by the author; North-Holland Mathematical Library, 19. MR 0482697 (58 #2753b)
  • [23] Masatoshi Fukushima, Yōichi Ōshima, and Masayoshi Takeda, Dirichlet forms and symmetric Markov processes, de Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 1994. MR 1303354 (96f:60126)
  • [24] Mariano Giaquinta, Giuseppe Modica, and Jiří Souček, Cartesian currents in the calculus of variations. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 37, Springer-Verlag, Berlin, 1998. Cartesian currents. MR 1645086 (2000b:49001a)
  • [25] B. M. Hambly, Brownian motion on a homogeneous random fractal, Probab. Theory Related Fields 94 (1992), no. 1, 1-38. MR 1189083 (93m:60163), https://doi.org/10.1007/BF01222507
  • [26] B. M. Hambly, Brownian motion on a random recursive Sierpinski gasket, Ann. Probab. 25 (1997), no. 3, 1059-1102. MR 1457612 (98i:60072), https://doi.org/10.1214/aop/1024404506
  • [27] B. M. Hambly, V. Metz, and A. Teplyaev, Self-similar energies on post-critically finite self-similar fractals, J. London Math. Soc. (2) 74 (2006), no. 1, 93-112. MR 2254554 (2007i:31011), https://doi.org/10.1112/S002461070602312X
  • [28] Juha Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. MR 1800917 (2002c:30028)
  • [29] Juha Heinonen and Pekka Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), no. 1, 1-61. MR 1654771 (99j:30025), https://doi.org/10.1007/BF02392747
  • [30] Michael Hinz, 1-forms and polar decomposition on harmonic spaces, Potential Anal. 38 (2013), no. 1, 261-279. MR 3010780, https://doi.org/10.1007/s11118-012-9272-2
  • [31] M. Hinz, D. Kelleher, and A. Teplyaev, Measures and Dirichlet forms under the Gelfand transform, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 408 (2012), no. Veroyatnost i Statistika. 18, 303-322, 329-330 (English, with English and Russian summaries). MR 3032223
  • [32] M. Hinz, D. Kelleher, and A. Teplyaev, Metrics and spectral triples for Dirichlet and resistance forms, preprint
  • [33] M. Hinz, M. Röckner, and A. Teplyaev, Vector analysis for regular Dirichlet forms and quasilinear PDE and SPDE on fractals, preprint, to appear in Stoch. Proc. Appl. arXiv:1202.0743 (2012).
  • [34] M. Hinz and A. Teplyaev, Vector analysis on fractals and applications, to appear in Contemporary Math. arXiv:1207.6375
  • [35] Michael Hinz and Alexander Teplyaev, Dirac and magnetic Schrödinger operators on fractals, J. Funct. Anal. 265 (2013), no. 11, 2830-2854. MR 3096991, https://doi.org/10.1016/j.jfa.2013.07.021
  • [36] Masanori Hino, On singularity of energy measures on self-similar sets, Probab. Theory Related Fields 132 (2005), no. 2, 265-290. MR 2199293 (2007g:28010), https://doi.org/10.1007/s00440-004-0396-1
  • [37] Masanori Hino and Kenji Nakahara, On singularity of energy measures on self-similar sets. II, Bull. London Math. Soc. 38 (2006), no. 6, 1019-1032. MR 2285256 (2008c:28008), https://doi.org/10.1112/S0024609306019072
  • [38] M. Hino, Measurable Riemannian structures associated with strong local Dirichlet forms, Math. Nachr. 286 (2013), no. 14-15, 1466-1478. MR 3119694
  • [39] Masanori Hino, Upper estimate of martingale dimension for self-similar fractals, Probab. Theory Related Fields 156 (2013), no. 3-4, 739-793. MR 3078285, https://doi.org/10.1007/s00440-012-0442-3
  • [40] Marius Ionescu, Luke G. Rogers, and Alexander Teplyaev, Derivations and Dirichlet forms on fractals, J. Funct. Anal. 263 (2012), no. 8, 2141-2169. MR 2964679, https://doi.org/10.1016/j.jfa.2012.05.021
  • [41] Jürgen Jost, Riemannian geometry and geometric analysis, 3rd ed., Universitext, Springer-Verlag, Berlin, 2002. MR 1871261 (2002i:53001)
  • [42] T. J. Laakso, Ahlfors $ Q$-regular spaces with arbitrary $ Q>1$ admitting weak Poincaré inequality, Geom. Funct. Anal. 10 (2000), no. 1, 111-123. MR 1748917 (2001m:30027), https://doi.org/10.1007/s000390050003
  • [43] John M. Lee, Introduction to smooth manifolds, Graduate Texts in Mathematics, vol. 218, Springer-Verlag, New York, 2003. MR 1930091 (2003k:58001)
  • [44] Yves Le Jan, Mesures associées à une forme de Dirichlet. Applications, Bull. Soc. Math. France 106 (1978), no. 1, 61-112 (French). MR 508949 (81c:31014)
  • [45] Tom Lindstrøm, Brownian motion on nested fractals, Mem. Amer. Math. Soc. 83 (1990), no. 420, iv+128. MR 988082 (90k:60157), https://doi.org/10.1090/memo/0420
  • [46] Naotaka Kajino, Heat kernel asymptotics for the measurable Riemannian structure on the Sierpinski gasket, Potential Anal. 36 (2012), no. 1, 67-115. MR 2886454, https://doi.org/10.1007/s11118-011-9221-5
  • [47] J. Kigami, Harmonic metric and Dirichlet form on the Sierpiński gasket, diffusions on fractals (Sanda/Kyoto, 1990) Pitman Res. Notes Math. Ser., vol. 283, Longman Sci. Tech., Harlow, 1993, pp. 201-218. MR 1354156 (96m:31014)
  • [48] Jun Kigami, Analysis on fractals, Cambridge Tracts in Mathematics, vol. 143, Cambridge University Press, Cambridge, 2001. MR 1840042 (2002c:28015)
  • [49] Jun Kigami, Measurable Riemannian geometry on the Sierpinski gasket: the Kusuoka measure and the Gaussian heat kernel estimate, Math. Ann. 340 (2008), no. 4, 781-804. MR 2372738 (2009g:60105), https://doi.org/10.1007/s00208-007-0169-0
  • [50] Jun Kigami, Harmonic analysis for resistance forms, J. Funct. Anal. 204 (2003), no. 2, 399-444. MR 2017320 (2004m:31010), https://doi.org/10.1016/S0022-1236(02)00149-0
  • [51] Jun Kigami, Resistance forms, quasisymmetric maps and heat kernel estimates, Mem. Amer. Math. Soc. 216 (2012), no. 1015, vi+132. MR 2919892, https://doi.org/10.1090/S0065-9266-2011-00632-5
  • [52] Jun Kigami, Robert S. Strichartz, and Katharine C. Walker, Constructing a Laplacian on the diamond fractal, Experiment. Math. 10 (2001), no. 3, 437-448. MR 1917429 (2003d:28013)
  • [53] Pekka Koskela and Yuan Zhou, Geometry and analysis of Dirichlet forms, Adv. Math. 231 (2012), no. 5, 2755-2801. MR 2970465, https://doi.org/10.1016/j.aim.2012.08.004
  • [54] Shigeo Kusuoka, Dirichlet forms on fractals and products of random matrices, Publ. Res. Inst. Math. Sci. 25 (1989), no. 4, 659-680. MR 1025071 (91m:60142), https://doi.org/10.2977/prims/1195173187
  • [55] S. Kusuoka, Lecture on diffusion process on nested fractals. Lecture Notes in Math. 1567 39-98, Springer-Verlag, Berlin, 1993.
  • [56] Zhi Ming Ma and Michael Röckner, Introduction to the theory of (nonsymmetric) Dirichlet forms, Universitext, Springer-Verlag, Berlin, 1992. MR 1214375 (94d:60119)
  • [57] John M. Mackay, Jeremy T. Tyson, and Kevin Wildrick, Modulus and Poincaré inequalities on non-self-similar Sierpiński carpets, Geom. Funct. Anal. 23 (2013), no. 3, 985-1034. MR 3061778, https://doi.org/10.1007/s00039-013-0227-6
  • [58] Takeyuki Nagasawa, Navier-Stokes flow on Riemannian manifolds, Proceedings of the Second World Congress of Nonlinear Analysts, Part 2 (Athens, 1996), 1997, pp. 825-832. MR 1487663 (98m:35164), https://doi.org/10.1016/S0362-546X(96)00375-6
  • [59] Luke G. Rogers and Alexander Teplyaev, Laplacians on the basilica Julia sets, Commun. Pure Appl. Anal. 9 (2010), no. 1, 211-231. MR 2556753 (2011c:28024), https://doi.org/10.3934/cpaa.2010.9.211
  • [60] Michael Röckner and Tusheng Zhang, Stochastic 3D tamed Navier-Stokes equations: existence, uniqueness and small time large deviation principles, J. Differential Equations 252 (2012), no. 1, 716-744. MR 2852224, https://doi.org/10.1016/j.jde.2011.09.030
  • [61] Benjamin Steinhurst, Diffusions and Laplacians on Laakso, Barlow-Evans, and other fractals, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)-University of Connecticut. MR 2753167
  • [62] B. Steinhurst, Uniqueness of locally symmetric Brownian Motion on Laakso Spaces, Potential Anal. 38 (2013), no. 1, 281-298. MR 3010781
  • [63] B. Steinhurst and A. Teplyaev, Symmetric Dirichlet forms and spectral analysis on Barlow-Evans fractals,preprint, 2011.
  • [64] Robert S. Strichartz, Taylor approximations on Sierpinski gasket type fractals, J. Funct. Anal. 174 (2000), no. 1, 76-127. MR 1761364 (2001i:31018), https://doi.org/10.1006/jfan.2000.3580
  • [65] Roger Temam, Navier-Stokes equations and nonlinear functional analysis, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 41, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1983. MR 764933 (86f:35152)
  • [66] Alexander Teplyaev, Gradients on fractals, J. Funct. Anal. 174 (2000), no. 1, 128-154. MR 1761365 (2001h:31012), https://doi.org/10.1006/jfan.2000.3581
  • [67] Alexander Teplyaev, Energy and Laplacian on the Sierpiński gasket, Fractal geometry and applications: a jubilee of Benoît Mandelbrot. Part 1, Proc. Sympos. Pure Math., vol. 72, Amer. Math. Soc., Providence, RI, 2004, pp. 131-154. MR 2112105 (2006i:31011)
  • [68] Alexander Teplyaev, Harmonic coordinates on fractals with finitely ramified cell structure, Canad. J. Math. 60 (2008), no. 2, 457-480. MR 2398758 (2008m:60066), https://doi.org/10.4153/CJM-2008-022-3
  • [69] Frank W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman and Co., Glenview, Ill.-London, 1971. MR 0295244 (45 #4312)
  • [70] Nik Weaver, Lipschitz algebras and derivations. II. Exterior differentiation, J. Funct. Anal. 178 (2000), no. 1, 64-112. MR 1800791 (2002g:46040a), https://doi.org/10.1006/jfan.2000.3637

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 31E05, 60J45, 28A80, 31C25, 35J25, 35Q30, 46L87, 47F05, 58J65, 60J60, 81Q35

Retrieve articles in all journals with MSC (2010): 31E05, 60J45, 28A80, 31C25, 35J25, 35Q30, 46L87, 47F05, 58J65, 60J60, 81Q35


Additional Information

Michael Hinz
Affiliation: Department of Mathematics, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
Email: mhinz@math.uni-bielefeld.de

Alexander Teplyaev
Affiliation: Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-3009
Email: teplyaev@math.uconn.edu

DOI: https://doi.org/10.1090/S0002-9947-2014-06203-X
Received by editor(s): May 30, 2013
Published electronically: April 30, 2014
Additional Notes: The research of the first author was supported in part by the Alexander von Humboldt Foundation (Feodor Lynen Research Fellowship Program) and carried out during a stay at the Department of Mathematics, University of Connecticut, Storrs, Connecticut 06269-3009
The research of the first and second authors was supported in part by NSF grant DMS-0505622
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society