Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

KO-rings of full flag varieties


Author: Marcus Zibrowius
Journal: Trans. Amer. Math. Soc. 367 (2015), 2997-3016
MSC (2010): Primary 55N15, 19L99
DOI: https://doi.org/10.1090/S0002-9947-2014-06318-6
Published electronically: July 24, 2014
MathSciNet review: 3301890
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present type-independent computations of the $ \mathrm {KO}$-groups of full flag varieties, i.e. of quotient spaces $ G/T$ of compact Lie groups by their maximal tori. Our main tool is the identification of the Witt ring, a quotient of the $ \mathrm {KO}$-ring, of these varieties with the Tate cohomology of their complex $ \mathrm {K}$-ring. The computations show that the Witt ring is an exterior algebra whose generators are determined by representations of $ G$.


References [Enhancements On Off] (What's this?)

  • [Ada69] J. Frank Adams, Lectures on Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0252560 (40 #5780)
  • [ABB$^+$14] L. Astey, A. Bahri, M. Bendersky, F. R. Cohen, D. M. Davis, S. Gitler, M. Mahowald, N. Ray, and R. Wood, The $ KO^*$-rings of $ BT^m$, the Davis-Januszkiewicz spaces and certain toric manifolds, J. Pure Appl. Algebra 218 (2014), no. 2, 303-320. MR 3120631, https://doi.org/10.1016/j.jpaa.2013.06.001
  • [AH61] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 7-38. MR 0139181 (25 #2617)
  • [Bal00] Paul Balmer, Triangular Witt groups. I. The 12-term localization exact sequence, $ K$-Theory 19 (2000), no. 4, 311-363. MR 1763933 (2002h:19002), https://doi.org/10.1023/A:1007844609552
  • [BC12] Paul Balmer and Baptiste Calmès, Witt groups of Grassmann varieties, J. Algebraic Geom. 21 (2012), no. 4, 601-642. MR 2957690, https://doi.org/10.1090/S1056-3911-2012-00613-4
  • [Bou02] Nicolas Bourbaki, Lie groups and Lie algebras. Chapters 4-6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002. Translated from the 1968 French original by Andrew Pressley. MR 1890629 (2003a:17001)
  • [Bou90] Aldridge K. Bousfield, A classification of $ K$-local spectra, J. Pure Appl. Algebra 66 (1990), no. 2, 121-163. MR 1075335
  • [Bou05] Aldridge K. Bousfield, On the 2-primary $ v_1$-periodic homotopy groups of spaces, Topology 44 (2005), no. 2, 381-413. MR 2114954
  • [BG10] Robert R. Bruner and J. P. C. Greenlees, Connective real $ K$-theory of finite groups, Mathematical Surveys and Monographs, vol. 169, American Mathematical Society, Providence, RI, 2010. MR 2723113 (2011k:19007)
  • [Dav03] Donald M. Davis, Representation types and 2-primary homotopy groups of certain compact Lie groups, Homology Homotopy Appl. 5 (2003), no. 1, 297-324. MR 2006403 (2005b:55030)
  • [Fuj67] Michikazu Fujii, $ K_{O}$-groups of projective spaces, Osaka J. Math. 4 (1967), 141-149. MR 0219060 (36 #2143)
  • [Hod75] Luke Hodgkin, The equivariant Künneth theorem in $ K$-theory, Topics in $ K$-theory. Two independent contributions, Springer, Berlin, 1975, pp. 1-101. Lecture Notes in Math., Vol. 496. MR 0478156 (57 #17645)
  • [Hog69] S. G. Hoggar, On $ {\rm KO}$ theory of Grassmannians, Quart. J. Math. Oxford Ser. (2) 20 (1969), 447-463. MR 0254841 (40 #8048)
  • [KKO04] Daisuke Kishimoto, Akira Kono, and Akihiro Ohsita, $ K{\rm O}$-theory of flag manifolds, J. Math. Kyoto Univ. 44 (2004), no. 1, 217-227. MR 2062716 (2005c:55010)
  • [KO13] Daisuke Kishimoto and Akihiro Ohsita, $ KO$-theory of exceptional flag manifolds, Kyoto J. Math. 53 (2013), no. 3, 673-692. MR 3102565, https://doi.org/10.1215/21562261-2265923
  • [KH92] Akira Kono and Shin-ichiro Hara, $ K{\rm O}$-theory of Hermitian symmetric spaces, Hokkaido Math. J. 21 (1992), no. 1, 103-116. MR 1153756 (93b:55006), https://doi.org/10.14492/hokmj/1381413257
  • [KH91] Akira Kono and Shin-ichiro Hara, $ K{\rm O}$-theory of complex Grassmannians, J. Math. Kyoto Univ. 31 (1991), no. 3, 827-833. MR 1127102 (92g:55009)
  • [May96] J. P. May, Equivariant homotopy and cohomology theory, CBMS Regional Conference Series in Mathematics, vol. 91, Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the American Mathematical Society, Providence, RI, 1996. With contributions by M. Cole, G. Comezana, S. Costenoble, A. D. Elmendorf, J. P. C. Greenlees, L. G. Lewis, Jr., R. J. Piacenza, G. Triantafillou, and S. Waner. MR 1413302 (97k:55016)
  • [Nen09] Alexander Nenashev, On the Witt groups of projective bundles and split quadrics: geometric reasoning, J. K-Theory 3 (2009), no. 3, 533-546. MR 2507729 (2010e:19004), https://doi.org/10.1017/is008007001jkt050
  • [Pan94] I. A. Panin, On the algebraic $ K$-theory of twisted flag varieties, $ K$-Theory 8 (1994), no. 6, 541-585. MR 1326751 (96d:19006), https://doi.org/10.1007/BF00961020
  • [Pit72] Harsh V. Pittie, Homogeneous vector bundles on homogeneous spaces, Topology 11 (1972), 199-203. MR 0290402 (44 #7583)
  • [Seg68] Graeme Segal, Equivariant $ K$-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129-151. MR 0234452 (38 #2769)
  • [Ser95] Jean-Pierre Serre, Représentations linéaires et espaces homogènes kählériens des groupes de Lie compacts (d'après Armand Borel et André Weil), Séminaire Bourbaki, Vol. 2, Soc. Math. France, Paris, 1995, pp. Exp. No. 100, 447-454 (French). MR 1609256
  • [Ste75] Robert Steinberg, On a theorem of Pittie, Topology 14 (1975), 173-177. MR 0372897 (51 #9101)
  • [Wal03a] Charles Walter, Grothendieck-Witt groups of triangulated categories (2003), available at www.math.uiuc.edu/K-theory/0643/.
  • [Wal03b] Charles Walter, Grothendieck-Witt groups of projective bundles (2003), available at www.math.uiuc.edu/K-theory/0644/.
  • [Yag] Nobuaki Yagita, Witt groups of algebraic groups, Publ. Res. Inst. Math. Sci. 50 (2014), no. 1, 113-151. MR 3167581
  • [Zib11] Marcus Zibrowius, Witt groups of complex cellular varieties, Doc. Math. 16 (2011), 465-511. MR 2823367 (2012m:19009)
  • [Zib] Marcus Zibrowius, Twisted Witt groups of flag varieties, Journal of K-theory. Published online April 17, 2014. DOI 10.1017/is014003028jkt260.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 55N15, 19L99

Retrieve articles in all journals with MSC (2010): 55N15, 19L99


Additional Information

Marcus Zibrowius
Affiliation: Bergische Universität Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany
Email: marcus.zibrowius@cantab.net

DOI: https://doi.org/10.1090/S0002-9947-2014-06318-6
Received by editor(s): May 29, 2013
Received by editor(s) in revised form: October 29, 2013
Published electronically: July 24, 2014
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society