Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Existence and symmetry of positive ground states for a doubly critical Schrödinger system


Authors: Zhijie Chen and Wenming Zou
Journal: Trans. Amer. Math. Soc. 367 (2015), 3599-3646
MSC (2010): Primary 35J50, 35J47; Secondary 35B33, 35B09
DOI: https://doi.org/10.1090/S0002-9947-2014-06237-5
Published electronically: September 19, 2014
MathSciNet review: 3314818
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the following doubly critical Schrödinger system:

$\displaystyle \begin {cases}-\Delta u -\frac {\lambda _1}{\vert x\vert^2}u=u^{2... ...b{R}^N),\quad u,\, v>0\,\,\hbox {in $\mathbb{R}^N\setminus \{0\}$},\end{cases} $

where $ N\ge 3$, $ \lambda _1, \lambda _2\in (0, \frac {(N-2)^2}{4})$, $ 2^\ast =\frac {2N}{N-2}$ and $ \alpha >1, \beta >1$ satisfying $ \alpha +\beta =2^\ast $. This problem is related to coupled nonlinear Schrödinger equations with critical exponent for Bose-Einstein condensate. For different ranges of $ N$, $ \alpha $, $ \beta $ and $ \nu >0$, we obtain positive ground state solutions via some quite different variational methods, which are all radially symmetric. It turns out that the least energy level depends heavily on the relations among $ \alpha , \,\beta $ and $ 2$. Besides, for sufficiently small $ \nu >0$, positive solutions are also obtained via a variational perturbation approach. Note that the Palais-Smale condition cannot hold for any positive energy level, which makes the study via variational methods rather complicated.

References [Enhancements On Off] (What's this?)

  • [1] Boumediene Abdellaoui, Veronica Felli, and Ireneo Peral, Some remarks on systems of elliptic equations doubly critical in the whole $ \mathbb{R}^N$, Calc. Var. Partial Differential Equations 34 (2009), no. 1, 97-137. MR 2448311 (2010d:35067), https://doi.org/10.1007/s00526-008-0177-2
  • [2] Boumediene Abdellaoui, Ireneo Peral, and Veronica Felli, Existence and multiplicity for perturbations of an equation involving a Hardy inequality and the critical Sobolev exponent in the whole of $ \mathbb{R}^N$, Adv. Differential Equations 9 (2004), no. 5-6, 481-508. MR 2099969 (2006d:35062)
  • [3] N. Akhmediev and A. Ankiewicz, Partially coherent solitons on a finite background, Phys. Rev. Lett. 82 (1999), 2661-2664.
  • [4] Antonio Ambrosetti and Eduardo Colorado, Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc. (2) 75 (2007), no. 1, 67-82. MR 2302730 (2008f:35369), https://doi.org/10.1112/jlms/jdl020
  • [5] Antonio Ambrosetti and Paul H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349-381. MR 0370183 (51 #6412)
  • [6] Thierry Aubin, Problèmes isopérimétriques et espaces de Sobolev, J. Differential Geometry 11 (1976), no. 4, 573-598 (French). MR 0448404 (56 #6711)
  • [7] Haïm Brézis and Elliott Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486-490. MR 699419 (84e:28003), https://doi.org/10.2307/2044999
  • [8] Haïm Brézis and Louis Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437-477. MR 709644 (84h:35059), https://doi.org/10.1002/cpa.3160360405
  • [9] Jaeyoung Byeon and Louis Jeanjean, Standing waves for nonlinear Schrödinger equations with a general nonlinearity, Arch. Ration. Mech. Anal. 185 (2007), no. 2, 185-200. MR 2317788 (2008g:35049), https://doi.org/10.1007/s00205-006-0019-3
  • [10] Wenxiong Chen and Congming Li, An integral system and the Lane-Emden conjecture, Discrete Contin. Dyn. Syst. 24 (2009), no. 4, 1167-1184. MR 2505697 (2010d:35068), https://doi.org/10.3934/dcds.2009.24.1167
  • [11] Wenxiong Chen, Congming Li, and Biao Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), no. 3, 330-343. MR 2200258 (2006m:45007a), https://doi.org/10.1002/cpa.20116
  • [12] Zhijie Chen and Wenming Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent, Arch. Ration. Mech. Anal. 205 (2012), no. 2, 515-551. MR 2947540, https://doi.org/10.1007/s00205-012-0513-8
  • [13] Zhijie Chen and Wenming Zou, Positive least energy solutions and phase separation for coupled Schrödinger equations with critical exponent: Higher dimensional case, Calc. Var. Partial Differential Equations, to appear, DOI 10.1007/s00526-014-0717-x.
  • [14] B. Esry, C. Greene, J. Burke, and J. Bohn, Hartree-Fock theory for double condesates, Phys. Rev. Lett. 78 (1997), 3594-3597.
  • [15] Veronica Felli and Angela Pistoia, Existence of blowing-up solutions for a nonlinear elliptic equation with Hardy potential and critical growth, Comm. Partial Differential Equations 31 (2006), no. 1-3, 21-56. MR 2209748 (2006k:35090), https://doi.org/10.1080/03605300500358145
  • [16] D. J. Frantzeskakis, Dark solitons in atomic Bose-Einstein condensates: from theory to experiments, J. Phys. A 43 (2010), no. 21, 213001, 68. MR 2644602 (2011m:82041), https://doi.org/10.1088/1751-8113/43/21/213001
  • [17] B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209-243. MR 544879 (80h:35043)
  • [18] B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $ {\bf R}^{n}$, Mathematical analysis and applications, Part A, Adv. in Math. Suppl. Stud., vol. 7, Academic Press, New York, 1981, pp. 369-402. MR 634248 (84a:35083)
  • [19] D. Hall, M. Matthews, J. Ensher, C. Wieman, and E. Cornell, Dynamics of component separation in a binary mixture of Bose-Einstein condensates, Phys. Rev. Lett. 81 (1998), 1539-1542.
  • [20] Yu. S. Kivshar and B. Luther-Davies, Dark optical solitons: physics and applications, Physics Reports 298 (1998), 81-197.
  • [21] Elliott H. Lieb and Michael Loss, Analysis, Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 1997. MR 1415616 (98b:00004)
  • [22] Tai-Chia Lin and Juncheng Wei, Ground state of $ N$ coupled nonlinear Schrödinger equations in $ \mathbf {R}^n$, $ n\leq 3$, Comm. Math. Phys. 255 (2005), no. 3, 629-653. MR 2135447 (2006g:35044), https://doi.org/10.1007/s00220-005-1313-x
  • [23] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145-201. MR 834360 (87c:49007), https://doi.org/10.4171/RMI/6
  • [24] P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. II, Rev. Mat. Iberoamericana 1 (1985), no. 2, 45-121. MR 850686 (87j:49012), https://doi.org/10.4171/RMI/12
  • [25] Zhaoli Liu and Zhi-Qiang Wang, Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phys. 282 (2008), no. 3, 721-731. MR 2426142 (2009k:58022), https://doi.org/10.1007/s00220-008-0546-x
  • [26] L. A. Maia, E. Montefusco, and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differential Equations 229 (2006), no. 2, 743-767. MR 2263573 (2007h:35070), https://doi.org/10.1016/j.jde.2006.07.002
  • [27] Alessio Pomponio, Coupled nonlinear Schrödinger systems with potentials, J. Differential Equations 227 (2006), no. 1, 258-281. MR 2233961 (2007e:35263), https://doi.org/10.1016/j.jde.2005.09.002
  • [28] Boyan Sirakov, Least energy solitary waves for a system of nonlinear Schrödinger equations in $ \mathbb{R}^n$, Comm. Math. Phys. 271 (2007), no. 1, 199-221. MR 2283958 (2007k:35477), https://doi.org/10.1007/s00220-006-0179-x
  • [29] Didier Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities, Trans. Amer. Math. Soc. 357 (2005), no. 7, 2909-2938 (electronic). MR 2139932 (2006f:35102), https://doi.org/10.1090/S0002-9947-04-03769-9
  • [30] Michael Struwe, A global compactness result for elliptic boundary value problems involving limiting nonlinearities, Math. Z. 187 (1984), no. 4, 511-517. MR 760051 (86k:35046), https://doi.org/10.1007/BF01174186
  • [31] Michael Struwe, Variational methods, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 34, Springer-Verlag, Berlin, 1996. Applications to nonlinear partial differential equations and Hamiltonian systems. MR 1411681 (98f:49002)
  • [32] Giorgio Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4) 110 (1976), 353-372. MR 0463908 (57 #3846)
  • [33] Susanna Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Differential Equations 1 (1996), no. 2, 241-264. MR 1364003 (97b:35057)
  • [34] Susanna Terracini and Gianmaria Verzini, Multipulse phases in $ k$-mixtures of Bose-Einstein condensates, Arch. Ration. Mech. Anal. 194 (2009), no. 3, 717-741. MR 2563622 (2011a:35109), https://doi.org/10.1007/s00205-008-0172-y
  • [35] Michel Willem, Minimax theorems, Progress in Nonlinear Differential Equations and their Applications, 24, Birkhäuser Boston Inc., Boston, MA, 1996. MR 1400007 (97h:58037)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35J50, 35J47, 35B33, 35B09

Retrieve articles in all journals with MSC (2010): 35J50, 35J47, 35B33, 35B09


Additional Information

Zhijie Chen
Affiliation: Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
Email: chenzhijie1987@sina.com

Wenming Zou
Affiliation: Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
Email: wzou@math.tsinghua.edu.cn

DOI: https://doi.org/10.1090/S0002-9947-2014-06237-5
Received by editor(s): December 13, 2012
Received by editor(s) in revised form: July 2, 2013
Published electronically: September 19, 2014
Additional Notes: This work was supported by NSFC (11025106, 11371212, 11271386) and the Both-Side Tsinghua Fund.
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society