Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Local invariants of isogenous elliptic curves


Authors: Tim Dokchitser and Vladimir Dokchitser
Journal: Trans. Amer. Math. Soc. 367 (2015), 4339-4358
MSC (2010): Primary 11G07; Secondary 11G05, 11G40
DOI: https://doi.org/10.1090/S0002-9947-2014-06271-5
Published electronically: October 10, 2014
MathSciNet review: 3324930
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate how various invariants of elliptic curves, such as the discriminant, Kodaira type, Tamagawa number and real and complex periods, change under an isogeny of prime degree $ p$. For elliptic curves over $ l$-adic fields, the classification is almost complete (the exception is wild potentially supersingular reduction when $ l=p$), and is summarised in a table.


References [Enhancements On Off] (What's this?)

  • [1] B. J. Birch, Conjectures concerning elliptic curves, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 106-112. MR 0174558 (30 #4759)
  • [2] K. Česnavičius, The $ p$-parity conjecture for elliptic curves with a $ p$-isogeny, 2012, arxiv: 1207.0431, to appear in J. Reine Angew. Math.
  • [3] John Coates, Elliptic curves with complex multiplication and Iwasawa theory, Bull. London Math. Soc. 23 (1991), no. 4, 321-350. MR 1125859 (92i:11115), https://doi.org/10.1112/blms/23.4.321
  • [4] David A. Cox, Primes of the form $ x^2 + ny^2$, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1989. Fermat, class field theory and complex multiplication. MR 1028322 (90m:11016)
  • [5] Fred Diamond and John Im, Modular forms and modular curves, Seminar on Fermat's Last Theorem (Toronto, ON, 1993-1994) CMS Conf. Proc., vol. 17, Amer. Math. Soc., Providence, RI, 1995, pp. 39-133. MR 1357209 (97g:11044)
  • [6] Tim Dokchitser and Vladimir Dokchitser, Parity of ranks for elliptic curves with a cyclic isogeny, J. Number Theory 128 (2008), no. 3, 662-679. MR 2389862 (2009c:11079), https://doi.org/10.1016/j.jnt.2007.02.008
  • [7] Tim Dokchitser and Vladimir Dokchitser, On the Birch-Swinnerton-Dyer quotients modulo squares, Ann. of Math. (2) 172 (2010), no. 1, 567-596. MR 2680426 (2011h:11069), https://doi.org/10.4007/annals.2010.172.567
  • [8] T. Dokchitser and V. Dokchitser, Growth of $ \text {\eightcyr \cyracc {Sh}}$ in towers for isogenous curves, preprint, 2013, arxiv:1301.4257.
  • [9] Vladimir Dokchitser, Root numbers of non-abelian twists of elliptic curves, Proc. London Math. Soc. (3) 91 (2005), no. 2, 300-324. With an appendix by Tom Fisher. MR 2167089 (2006f:11060), https://doi.org/10.1112/S0024611505015261
  • [10] Basil Gordon and Dale Sinor, Multiplicative properties of $ \eta $-products, Number theory, Madras 1987, Lecture Notes in Math., vol. 1395, Springer, Berlin, 1989, pp. 173-200. MR 1019331 (90k:11050), https://doi.org/10.1007/BFb0086404
  • [11] Nicholas M. Katz, $ p$-adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin, 1973, pp. 69-190. Lecture Notes in Mathematics, Vol. 350. MR 0447119 (56 #5434)
  • [12] Stefan Keil, Examples of non-simple abelian surfaces over the rationals with non-square order Tate-Shafarevich group, J. Number Theory 144 (2014), 25-69. MR 3239151, https://doi.org/10.1016/j.jnt.2014.04.018
  • [13] A. A. Klyachko, Modular forms and representations of symmetric groups, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 116 (1982), 74-85, 162 (Russian). Integral lattices and finite linear groups. MR 687842 (85f:11034)
  • [14] K. Kramer and J. Tunnell, Elliptic curves and local $ \varepsilon $-factors, Compositio Math. 46 (1982), no. 3, 307-352. MR 664648 (83m:14031)
  • [15] Alain Kraus, Sur le défaut de semi-stabilité des courbes elliptiques à réduction additive, Manuscripta Math. 69 (1990), no. 4, 353-385 (French, with English summary). MR 1080288 (91j:11045), https://doi.org/10.1007/BF02567933
  • [16] Dino Lorenzini, Models of curves and wild ramification, Pure Appl. Math. Q. 6 (2010), no. 1, Special Issue: In honor of John Tate, 41-82. MR 2591187 (2012a:11068), https://doi.org/10.4310/PAMQ.2010.v6.n1.a3
  • [17] Morris Newman, Construction and application of a class of modular functions. II, Proc. London Math. Soc. (3) 9 (1959), 373-387. MR 0107629 (21 #6354)
  • [18] Edward F. Schaefer, Class groups and Selmer groups, J. Number Theory 56 (1996), no. 1, 79-114. MR 1370197 (97e:11068), https://doi.org/10.1006/jnth.1996.0006
  • [19] Jean-Pierre Serre, Abelian $ l$-adic representations and elliptic curves, 2nd ed., Advanced Book Classics, Addison-Wesley Publishing Company Advanced Book Program, Redwood City, CA, 1989. With the collaboration of Willem Kuyk and John Labute. MR 1043865 (91b:11071)
  • [20] Jean-Pierre Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259-331 (French). MR 0387283 (52 #8126)
  • [21] Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492-517. MR 0236190 (38 #4488)
  • [22] Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210 (87g:11070)
  • [23] Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York, 1994. MR 1312368 (96b:11074)
  • [24] J. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki, Vol. 9, No. 306, 415-440, Soc. Math. France, Paris, 1995. MR 1610977

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11G07, 11G05, 11G40

Retrieve articles in all journals with MSC (2010): 11G07, 11G05, 11G40


Additional Information

Tim Dokchitser
Affiliation: Department of Mathematics, University of Bristol, University Walk, Bristol BS8 1TW, United Kingdom
Email: tim.dokchitser@bristol.ac.uk

Vladimir Dokchitser
Affiliation: Department of Pure Mathematics and Mathematical Statistics, Emmanuel College, Cambridge CB2 3AP, United Kingdom
Address at time of publication: Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
Email: v.dokchitser@dpmms.cam.ac.uk, v.dokchitser@warwick.ac.uk

DOI: https://doi.org/10.1090/S0002-9947-2014-06271-5
Received by editor(s): January 17, 2013
Received by editor(s) in revised form: August 4, 2013
Published electronically: October 10, 2014
Additional Notes: The first author was supported by a Royal Society University Research Fellowship
Article copyright: © Copyright 2014 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society