Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 

 

Cylindrically bounded constant mean curvature surfaces in $ \mathbb{H} ^2\times\mathbb{R}$


Author: Laurent Mazet
Journal: Trans. Amer. Math. Soc. 367 (2015), 5329-5354
MSC (2010): Primary 53A10
DOI: https://doi.org/10.1090/S0002-9947-2015-06171-6
Published electronically: April 2, 2015
MathSciNet review: 3347174
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper it is proved that a properly embedded constant mean curvature surface in $ \mathbb{H}^2\times \mathbb{R}$ which has finite topology and stays at a finite distance from a vertical geodesic line is invariant by rotation around a vertical geodesic line.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53A10

Retrieve articles in all journals with MSC (2010): 53A10


Additional Information

Laurent Mazet
Affiliation: Laboratoire d’Analyse et Mathématiques Appliquées, Université Paris-Est, CNRS UMR8050, UFR des Sciences et Technologie, Bâtiment P3 4eme étage, 61 avenue du Général de Gaulle, 94010 Créteil cedex, France
Email: laurent.mazet@math.cnrs.fr

DOI: https://doi.org/10.1090/S0002-9947-2015-06171-6
Received by editor(s): January 22, 2013
Published electronically: April 2, 2015
Article copyright: © Copyright 2015 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.