Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Connected Hopf algebras of Gelfand-Kirillov dimension four


Authors: D.-G. Wang, J. J. Zhang and G. Zhuang
Journal: Trans. Amer. Math. Soc. 367 (2015), 5597-5632
MSC (2010): Primary 16T05, 16P90, 16E10
DOI: https://doi.org/10.1090/S0002-9947-2015-06219-9
Published electronically: February 3, 2015
MathSciNet review: 3347184
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We classify connected Hopf algebras of Gelfand-Kirillov dimension 4 over an algebraically closed field of characteristic zero.


References [Enhancements On Off] (What's this?)

  • [AA] Nicolás Andruskiewitsch and Iván Ezequiel Angiono, On Nichols algebras with generic braiding, Modules and comodules, Trends Math., Birkhäuser Verlag, Basel, 2008, pp. 47-64. MR 2742620 (2012b:16079), https://doi.org/10.1007/978-3-7643-8742-6_3
  • [AS1] Nicolás Andruskiewitsch and Hans-Jürgen Schneider, Pointed Hopf algebras, New directions in Hopf algebras, Math. Sci. Res. Inst. Publ., vol. 43, Cambridge Univ. Press, Cambridge, 2002, pp. 1-68. MR 1913436 (2003e:16043)
  • [AS2] Nicolás Andruskiewitsch and Hans-Jürgen Schneider, A characterization of quantum groups, J. Reine Angew. Math. 577 (2004), 81-104. MR 2108213 (2005i:16083), https://doi.org/10.1515/crll.2004.2004.577.81
  • [Be] George M. Bergman, The diamond lemma for ring theory, Adv. in Math. 29 (1978), no. 2, 178-218. MR 506890 (81b:16001), https://doi.org/10.1016/0001-8708(78)90010-5
  • [Br1] Kenneth A. Brown, Noetherian Hopf algebras, Turkish J. Math. 31 (2007), no. suppl., 7-23. MR 2368080 (2008j:16106)
  • [Br2] Kenneth A. Brown, Representation theory of Noetherian Hopf algebras satisfying a polynomial identity (Seattle, WA, 1997), Contemp. Math., vol. 229, Amer. Math. Soc., Providence, RI, 1998, pp. 49-79. MR 1676211 (99m:16056), https://doi.org/10.1090/conm/229/03310
  • [Br3] Kenneth A. Brown, Noncommutative unipotent groups in characteristic 0, a lecture at the BIRS workshop on ``New Trends in Noncommutative Algebra and Algebraic Geometry'' from Oct. 28 to Nov. 2, 2012; video available at http://www.birs.ca/events/2012/5-day-workshops/12w5049/videos/watch/201210301535-Brown.mp4
  • [BG1] K. A. Brown and K. R. Goodearl, Homological aspects of Noetherian PI Hopf algebras of irreducible modules and maximal dimension, J. Algebra 198 (1997), no. 1, 240-265. MR 1482982 (99c:16036), https://doi.org/10.1006/jabr.1997.7109
  • [BG2] Ken A. Brown and Ken R. Goodearl, Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2002. MR 1898492 (2003f:16067)
  • [BZ] K. A. Brown and J. J. Zhang, Prime regular Hopf algebras of GK-dimension one, Proc. Lond. Math. Soc. (3) 101 (2010), no. 1, 260-302. MR 2661247 (2011j:16063), https://doi.org/10.1112/plms/pdp060
  • [GZ1] K. R. Goodearl and J. J. Zhang, Homological properties of quantized coordinate rings of semisimple groups, Proc. Lond. Math. Soc. (3) 94 (2007), no. 3, 647-671. MR 2325315 (2008e:20077), https://doi.org/10.1112/plms/pdl022
  • [GZ2] K. R. Goodearl and J. J. Zhang, Noetherian Hopf algebra domains of Gelfand-Kirillov dimension two, J. Algebra 324 (2010), no. 11, 3131-3168. MR 2732991 (2012d:16098), https://doi.org/10.1016/j.jalgebra.2009.11.001
  • [Gr] Mikhael Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 53-73. MR 623534 (83b:53041)
  • [Kh] V. K. Kharchenko, A quantum analogue of the Poincaré-Birkhoff-Witt theorem, Algebra Log. 38 (1999), no. 4, 476-507, 509 (Russian, with Russian summary); English transl., Algebra and Logic 38 (1999), no. 4, 259-276. MR 1763385 (2001f:16075), https://doi.org/10.1007/BF02671731
  • [KL] Günter R. Krause and Thomas H. Lenagan, Growth of algebras and Gelfand-Kirillov dimension, Revised edition, Graduate Studies in Mathematics, vol. 22, American Mathematical Society, Providence, RI, 2000. MR 1721834 (2000j:16035)
  • [Li] Gongxiang Liu, On Noetherian affine prime regular Hopf algebras of Gelfand-Kirillov dimension $ 1$, Proc. Amer. Math. Soc. 137 (2009), no. 3, 777-785. MR 2457414 (2010c:16037), https://doi.org/10.1090/S0002-9939-08-09034-5
  • [LWZ] D.-M. Lu, Q.-S. Wu, and J. J. Zhang, Homological integral of Hopf algebras, Trans. Amer. Math. Soc. 359 (2007), no. 10, 4945-4975. MR 2320655 (2008f:16083), https://doi.org/10.1090/S0002-9947-07-04159-1
  • [LPWZ1] D.-M. Lu, J. H. Palmieri, Q.-S. Wu, and J. J. Zhang, $ A$-infinity structure on Ext-algebras, J. Pure Appl. Algebra 213 (2009), no. 11, 2017-2037. MR 2533303 (2010e:16015), https://doi.org/10.1016/j.jpaa.2009.02.006
  • [LPWZ2] D. M. Lu, J. H. Palmieri, Q. S. Wu, and J. J. Zhang, $ A_\infty $-algebras for ring theorists, Proceedings of the International Conference on Algebra, 2004, pp. 91-128. MR 2058967 (2005g:16015)
  • [MR] J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, with the cooperation of L. W. Small; A Wiley-Interscience Publication, Pure and Applied Mathematics (New York), John Wiley & Sons Ltd., Chichester, 1987. MR 934572 (89j:16023)
  • [Mo] Susan Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82, Published for the Conference Board of the Mathematical Sciences, Washington, DC, by the Amer. Math. Soc., Providence, RI, 1993. MR 1243637 (94i:16019)
  • [OV] Lie groups and Lie algebras, III, Structure of Lie groups and Lie algebras; A translation of Current problems in mathematics. Fundamental directions. Vol. 41 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst.Nauchn. i Tekhn. Inform., Moscow, 1990 [ MR1056485 (91b:22001)]; Translation by V. Minachin [V. V. Minakhin]; Translation edited by A. L. Onishchik and È. B. Vinberg, Encyclopaedia of Mathematical Sciences, Vol. 41, Springer-Verlag, Berlin, 1994. MR 1349140 (96d:22001)
  • [RZ] D. Rogalski and J. J. Zhang, Regular algebras of dimension $ 4$ with $ 3$ generators, New trends in noncommutative algebra, Contemp. Math., vol. 562, Amer. Math. Soc., Providence, RI, 2012, pp. 221-241. MR 2905562, https://doi.org/10.1090/conm/562/11139
  • [SSW] L. W. Small, J. T. Stafford, and R. B. Warfield Jr., Affine algebras of Gel$ \cprime $fand-Kirillov dimension one are PI, Math. Proc. Cambridge Philos. Soc. 97 (1985), no. 3, 407-414. MR 778674 (86g:16025), https://doi.org/10.1017/S0305004100062976
  • [WZZ1] D.-G. Wang, J. J. Zhang, and G. Zhuang, Lower bounds of growth of Hopf algebras, Trans. Amer. Math. Soc. 365 (2013), no. 9, 4963-4986. MR 3066776, https://doi.org/10.1090/S0002-9947-2013-05793-5
  • [WZZ2] D.-G. Wang, J. J. Zhang, and G. Zhuang, Hopf algebras of GK-dimension two with vanishing Ext-group, J. Algebra 388 (2013), 219-247. MR 3061686, https://doi.org/10.1016/j.jalgebra.2013.03.032
  • [WZZ3] D.-G. Wang, J. J. Zhang, and G. Zhuang, Coassociative Lie algebras, Glasg. Math. J. 55 (2013), no. A, 195-215. MR 3110812, https://doi.org/10.1017/S001708951300058X
  • [WZZ4] D.-G. Wang, J. J. Zhang, and G. Zhuang, Primitive cohomology of Hopf algebras, arXiv 1411.4672.
  • [We] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324 (95f:18001)
  • [WuZ1] Q.-S. Wu and J. J. Zhang, Noetherian PI Hopf algebras are Gorenstein, Trans. Amer. Math. Soc. 355 (2003), no. 3, 1043-1066 (electronic). MR 1938745 (2003m:16056), https://doi.org/10.1090/S0002-9947-02-03106-9
  • [WuZ2] Q.-S. Wu and J. J. Zhang, Regularity of involutory PI Hopf algebras, J. Algebra 256 (2002), no. 2, 599-610. MR 1939124 (2004g:16042), https://doi.org/10.1016/S0021-8693(02)00142-4
  • [Zh1] Guangbin Zhuang, Existence of Hopf subalgebras of GK-dimension two, J. Pure Appl. Algebra 215 (2011), no. 12, 2912-2922. MR 2811574 (2012k:16090), https://doi.org/10.1016/j.jpaa.2011.04.012
  • [Zh2] Guangbin Zhuang, Properties of pointed and connected Hopf algebras of finite Gelfand-Kirillov dimension, J. Lond. Math. Soc. (2) 87 (2013), no. 3, 877-898. MR 3073681, https://doi.org/10.1112/jlms/jds079

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 16T05, 16P90, 16E10

Retrieve articles in all journals with MSC (2010): 16T05, 16P90, 16E10


Additional Information

D.-G. Wang
Affiliation: School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165, People’s Republic of China
Email: dgwang@mail.qfnu.edu.cn, dingguo95@126.com

J. J. Zhang
Affiliation: Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195
Email: zhang@math.washington.edu

G. Zhuang
Affiliation: Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195
Address at time of publication: Department of Mathematics, University of Southern California, 3620 S. Vermont Avenue, Los Angeles, California 90089-2532
Email: gzhuang@math.washington.edu, gzhuang@usc.edu

DOI: https://doi.org/10.1090/S0002-9947-2015-06219-9
Keywords: Universal enveloping algebra, Hopf algebra, Gelfand-Kirillov dimension, coassociative Lie algebra
Received by editor(s): March 29, 2013
Received by editor(s) in revised form: June 13, 2013
Published electronically: February 3, 2015
Article copyright: © Copyright 2015 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society