Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

The defocusing energy-supercritical cubic nonlinear wave equation in dimension five


Author: Aynur Bulut
Journal: Trans. Amer. Math. Soc. 367 (2015), 6017-6061
MSC (2010): Primary 35L71, 35B44, 35P25
DOI: https://doi.org/10.1090/tran/6068
Published electronically: April 20, 2015
MathSciNet review: 3356928
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the energy-supercritical nonlinear wave equation $ u_{tt}-\Delta u+\vert u\vert^2u=0$ with defocusing cubic nonlinearity in dimension $ d=5$ with no radial assumption on the initial data. We prove that a uniform-in-time
a priori bound on the critical norm implies that solutions exist globally in time and scatter at infinity in both time directions. Together with our earlier works in dimensions $ d\geq 6$ with general data and dimension $ d=5$ with radial data, the present work completes the study of global well-posedness and scattering in the energy-supercritical regime for the cubic nonlinearity under the assumption of uniform-in-time control over the critical norm.


References [Enhancements On Off] (What's this?)

  • [1] Hajer Bahouri and Patrick Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math. 121 (1999), no. 1, 131-175. MR 1705001 (2000i:35123)
  • [2] Aynur Bulut, Maximizers for the Strichartz inequalities for the wave equation, Differential Integral Equations 23 (2010), no. 11-12, 1035-1072. MR 2742477 (2011m:35202)
  • [3] Aynur Bulut, Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation, J. Funct. Anal. 263 (2012), no. 6, 1609-1660. MR 2948225, https://doi.org/10.1016/j.jfa.2012.06.001
  • [4] Aynur Bulut, The radial defocusing energy-supercritical cubic nonlinear wave equation in $ \mathbb{R}^{1+5}$, Nonlinearity 27 (2014), no. 8, 1859-1877. MR 3246158, https://doi.org/10.1088/0951-7715/27/8/1859
  • [5] Aynur Bulut, Global Well-posedness and Scattering for the Defocusing Energy-Supercritical Cubic Nonlinear Wave Equation, ProQuest LLC, Ann Arbor, MI, 2011. Thesis (Ph.D.)-The University of Texas at Austin. MR 3295410
  • [6] Aynur Bulut, The defocusing cubic nonlinear wave equation in the energy-supercritical regime, Recent advances in harmonic analysis and partial differential equations, Contemp. Math., vol. 581, Amer. Math. Soc., Providence, RI, 2012, pp. 1-11. MR 3013050, https://doi.org/10.1090/conm/581/11537
  • [7] James Colliander, Markus Keel, Gigliola Staffilani, Hideo Takaoka, and Terence Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $ \mathbb{R}^3$, Ann. of Math. (2) 167 (2008), no. 3, 767-865. MR 2415387 (2009f:35315), https://doi.org/10.4007/annals.2008.167.767
  • [8] Luis Escauriaza, Gregory A. Seregin, and Vladimir Šverák, $ L_{3,\infty }$-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk 58 (2003), no. 2(350), 3-44 (Russian, with Russian summary); English transl., Russian Math. Surveys 58 (2003), no. 2, 211-250. MR 1992563 (2004m:35204), https://doi.org/10.1070/RM2003v058n02ABEH000609
  • [9] Jean Ginibre and Giorgio Velo, Generalized Strichartz inequalities for the wave equation, J. Funct. Anal. 133 (1995), no. 1, 50-68. MR 1351643 (97a:46047), https://doi.org/10.1006/jfan.1995.1119
  • [10] Manoussos G. Grillakis, Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity, Ann. of Math. (2) 132 (1990), no. 3, 485-509. MR 1078267 (92c:35080), https://doi.org/10.2307/1971427
  • [11] Manoussos G. Grillakis, Regularity for the wave equation with a critical nonlinearity, Comm. Pure Appl. Math. 45 (1992), no. 6, 749-774. MR 1162370 (93e:35073), https://doi.org/10.1002/cpa.3160450604
  • [12] Lev Kapitanskii, The Cauchy problem for the semilinear wave equation. I., II., III, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 163 (1987), 76-104, 182 (1990), 38-85, and 181 (1990), 24-64. MR 918943 (89j:35088); MR 1064097 (91i:35127); MR 1097579 (92d:35200)
  • [13] Markus Keel and Terence Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), no. 5, 955-980. MR 1646048 (2000d:35018)
  • [14] Carlos E. Kenig and Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math. 166 (2006), no. 3, 645-675. MR 2257393 (2007g:35232), https://doi.org/10.1007/s00222-006-0011-4
  • [15] Carlos E. Kenig and Frank Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math. 201 (2008), no. 2, 147-212. MR 2461508 (2011a:35344), https://doi.org/10.1007/s11511-008-0031-6
  • [16] Carlos E. Kenig and Frank Merle, Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications, Amer. J. Math. 133 (2011), no. 4, 1029-1065. MR 2823870 (2012i:35244), https://doi.org/10.1353/ajm.2011.0029
  • [17] Carlos E. Kenig and Frank Merle, Radial solutions to energy supercritical wave equations in odd dimensions, Discrete Contin. Dyn. Syst. 31 (2011), no. 4, 1365-1381. MR 2836357 (2012j:35256), https://doi.org/10.3934/dcds.2011.31.1365
  • [18] Rowan Killip, Terence Tao, and Monica Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS) 11 (2009), no. 6, 1203-1258. MR 2557134 (2010m:35487), https://doi.org/10.4171/JEMS/180
  • [19] Rowan Killip and Monica Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math. 132 (2010), no. 2, 361-424. MR 2654778 (2011e:35357), https://doi.org/10.1353/ajm.0.0107
  • [20] Rowan Killip and Monica Visan, Energy-supercritical NLS: critical $ \dot H^s$-bounds imply scattering, Comm. Partial Differential Equations 35 (2010), no. 6, 945-987. MR 2753625 (2011m:35357), https://doi.org/10.1080/03605301003717084
  • [21] Rowan Killip and Monica Visan, The defocusing energy-supercritical nonlinear wave equation in three space dimensions, Trans. Amer. Math. Soc. 363 (2011), no. 7, 3893-3934. MR 2775831 (2012e:35161), https://doi.org/10.1090/S0002-9947-2011-05400-0
  • [22] Rowan Killip and Monica Visan, The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions, Proc. Amer. Math. Soc. 139 (2011), no. 5, 1805-1817. MR 2763767 (2011m:35229), https://doi.org/10.1090/S0002-9939-2010-10615-9
  • [23] Kenji Nakanishi, Scattering theory for the nonlinear Klein-Gordon equation with Sobolev critical power, Internat. Math. Res. Notices 1 (1999), 31-60. MR 1666973 (2000a:35174), https://doi.org/10.1155/S1073792899000021
  • [24] Hartmut Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z. 185 (1984), no. 2, 261-270. MR 731347 (85h:35165), https://doi.org/10.1007/BF01181697
  • [25] Jeffrey Rauch, I. The $ u^{5}$ Klein-Gordon equation. II. Anomalous singularities for semilinear wave equations, Collège de France Seminar, Vol. I (Paris, 1978/1979) Res. Notes in Math., vol. 53, Pitman, Boston, Mass., 1981, pp. 335-364. MR 631403 (83a:35066)
  • [26] Jalal Shatah and Michael Struwe, Regularity results for nonlinear wave equations, Ann. of Math. (2) 138 (1993), no. 3, 503-518. MR 1247991 (95f:35164), https://doi.org/10.2307/2946554
  • [27] Jalal Shatah and Michael Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices 7 (1994), 303ff., approx. 7 pp. (electronic). MR 1283026 (95e:35132), https://doi.org/10.1155/S1073792894000346
  • [28] Jalal Shatah and Michael Struwe, Geometric wave equations, Courant Lecture Notes in Mathematics, vol. 2, New York University Courant Institute of Mathematical Sciences, New York, 1998. MR 1674843 (2000i:35135)
  • [29] Michael Struwe, Globally regular solutions to the $ u^5$ Klein-Gordon equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), no. 3, 495-513 (1989). MR 1015805 (90j:35142)
  • [30] Terence Tao, Spacetime bounds for the energy-critical nonlinear wave equation in three spatial dimensions, Dyn. Partial Differ. Equ. 3 (2006), no. 2, 93-110. MR 2227039 (2007c:35116)
  • [31] Terence Tao, Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, vol. 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 2006. Local and global analysis. MR 2233925 (2008i:35211)
  • [32] Terence Tao, Monica Visan, and Xiaoyi Zhang, Minimal-mass blowup solutions of the mass-critical NLS, Forum Math. 20 (2008), no. 5, 881-919. MR 2445122 (2009m:35495), https://doi.org/10.1515/FORUM.2008.042

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35L71, 35B44, 35P25

Retrieve articles in all journals with MSC (2010): 35L71, 35B44, 35P25


Additional Information

Aynur Bulut
Affiliation: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
Email: abulut@math.ias.edu

DOI: https://doi.org/10.1090/tran/6068
Received by editor(s): October 14, 2012
Received by editor(s) in revised form: December 23, 2012
Published electronically: April 20, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society