Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A $ C^*$-algebra approach to complex symmetric operators


Authors: Kunyu Guo, Youqing Ji and Sen Zhu
Journal: Trans. Amer. Math. Soc. 367 (2015), 6903-6942
MSC (2010): Primary 47C10, 47A58; Secondary 47B37, 47A45
DOI: https://doi.org/10.1090/S0002-9947-2015-06215-1
Published electronically: February 26, 2015
MathSciNet review: 3378818
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, certain connections between complex symmetric operators and anti-automorphisms of singly generated $ C^*$-algebras are established. This provides a $ C^*$-algebra approach to the norm closure problem for complex symmetric operators. For $ T\in \mathcal {B(H)}$ satisfying $ C^*(T)\cap \mathcal {K(H)}=\{0\}$, we give several characterizations for $ T$ to be a norm limit of complex symmetric operators. As applications, we give concrete characterizations for weighted shifts with nonzero weights to be norm limits of complex symmetric operators. In particular, we prove a conjecture of Garcia and Poore. On the other hand, it is proved that an essentially normal operator is a norm limit of complex symmetric operators if and only if it is complex symmetric. We obtain a canonical decomposition for essentially normal operators which are complex symmetric.


References [Enhancements On Off] (What's this?)

  • [1] William Arveson, An invitation to $ C^*$-algebras, Springer-Verlag, New York, 1976. Graduate Texts in Mathematics, No. 39. MR 0512360 (58 #23621)
  • [2] Jeffrey L. Boersema, The range of united $ K$-theory, J. Funct. Anal. 235 (2006), no. 2, 701-718. MR 2225467 (2007a:46077), https://doi.org/10.1016/j.jfa.2005.12.012
  • [3] I. Chalendar, E. Fricain, and D. Timotin, On an extremal problem of Garcia and Ross, Oper. Matrices 3 (2009), no. 4, 541-546. MR 2597679 (2011b:30130), https://doi.org/10.7153/oam-03-31
  • [4] Nicolas Chevrot, Emmanuel Fricain, and Dan Timotin, The characteristic function of a complex symmetric contraction, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2877-2886 (electronic). MR 2317964 (2008c:47025), https://doi.org/10.1090/S0002-9939-07-08803-X
  • [5] Joseph A. Cima, Stephan Ramon Garcia, William T. Ross, and Warren R. Wogen, Truncated Toeplitz operators: spatial isomorphism, unitary equivalence, and similarity, Indiana Univ. Math. J. 59 (2010), no. 2, 595-620. MR 2648079 (2011i:47035), https://doi.org/10.1512/iumj.2010.59.4097
  • [6] Joseph A. Cima, William T. Ross, and Warren R. Wogen, Truncated Toeplitz operators on finite dimensional spaces, Oper. Matrices 2 (2008), no. 3, 357-369. MR 2440673 (2009e:47047), https://doi.org/10.7153/oam-02-21
  • [7] A. Connes, A factor not anti-isomorphic to itself, Ann. Math. (2) 101 (1975), 536-554. MR 0370209 (51 #6438)
  • [8] Alain Connes, Sur la classification des facteurs de type $ {\rm II}$, C. R. Acad. Sci. Paris Sér. A-B 281 (1975), no. 1, Aii, A13-A15 (French, with English summary). MR 0377534 (51 #13706)
  • [9] John B. Conway, A course in functional analysis, 2nd ed., Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York, 1990. MR 1070713 (91e:46001)
  • [10] Kenneth R. Davidson, $ C^*$-algebras by example, Fields Institute Monographs, vol. 6, American Mathematical Society, Providence, RI, 1996. MR 1402012 (97i:46095)
  • [11] Ronald G. Douglas, Banach algebra techniques in operator theory, 2nd ed., Graduate Texts in Mathematics, vol. 179, Springer-Verlag, New York, 1998. MR 1634900 (99c:47001)
  • [12] Jun Shen Fang, Chun-Lan Jiang, and Pei Yuan Wu, Direct sums of irreducible operators, Studia Math. 155 (2003), no. 1, 37-49. MR 1961159 (2003k:47012), https://doi.org/10.4064/sm155-1-3
  • [13] Nathan S. Feldman, Essentially subnormal operators, Proc. Amer. Math. Soc. 127 (1999), no. 4, 1171-1181. MR 1625741 (99m:47028), https://doi.org/10.1090/S0002-9939-99-05053-4
  • [14] Stephan R. Garcia, Three questions about complex symmetric operators, Integral Equations Operator Theory 72 (2012), no. 1, 3-4. MR 2872603, https://doi.org/10.1007/s00020-011-1931-y
  • [15] Stephan Ramon Garcia, Bob Lutz, and Dan Timotin, Two remarks about nilpotent operators of order two, Proc. Amer. Math. Soc. 142 (2014), no. 5, 1749-1756. MR 3168480, https://doi.org/10.1090/S0002-9939-2014-11944-7
  • [16] Stephan Ramon Garcia and Daniel E. Poore, On the closure of the complex symmetric operators: compact operators and weighted shifts, J. Funct. Anal. 264 (2013), no. 3, 691-712. MR 3003733, https://doi.org/10.1016/j.jfa.2012.11.009
  • [17] Stephan Ramon Garcia and Daniel E. Poore, On the norm closure problem for complex symmetric operators, Proc. Amer. Math. Soc. 141 (2013), no. 2, 549. MR 2996959, https://doi.org/10.1090/S0002-9939-2012-11347-4
  • [18] Stephan Ramon Garcia and Mihai Putinar, Complex symmetric operators and applications, Trans. Amer. Math. Soc. 358 (2006), no. 3, 1285-1315 (electronic). MR 2187654 (2006j:47036), https://doi.org/10.1090/S0002-9947-05-03742-6
  • [19] Stephan Ramon Garcia and Mihai Putinar, Complex symmetric operators and applications. II, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3913-3931 (electronic). MR 2302518 (2008b:47005), https://doi.org/10.1090/S0002-9947-07-04213-4
  • [20] Stephan Ramon Garcia and William T. Ross, Recent progress on truncated Toeplitz operators, Blaschke products and their applications, Fields Inst. Commun., vol. 65, Springer, New York, 2013, pp. 275-319. MR 3052299, https://doi.org/10.1007/978-1-4614-5341-3_15
  • [21] Stephan Ramon Garcia, William T. Ross, and Warren R. Wogen, $ C^*$-algebras generated by truncated Toeplitz operators, Concrete operators, spectral theory, operators in harmonic analysis and approximation, Oper. Theory Adv. Appl., vol. 236, Birkhäuser/Springer, Basel, 2014, pp. 181-192. MR 3203060, https://doi.org/10.1007/978-3-0348-0648-0_11
  • [22] Stephan Ramon Garcia and James E. Tener, Unitary equivalence of a matrix to its transpose, J. Operator Theory 68 (2012), no. 1, 179-203. MR 2966041
  • [23] Stephan Ramon Garcia and Warren R. Wogen, Complex symmetric partial isometries, J. Funct. Anal. 257 (2009), no. 4, 1251-1260. MR 2535469 (2011g:47005), https://doi.org/10.1016/j.jfa.2009.04.005
  • [24] Stephan Ramon Garcia and Warren R. Wogen, Some new classes of complex symmetric operators, Trans. Amer. Math. Soc. 362 (2010), no. 11, 6065-6077. MR 2661508 (2011g:47086), https://doi.org/10.1090/S0002-9947-2010-05068-8
  • [25] T. M. Gilbreath and Warren R. Wogen, Remarks on the structure of complex symmetric operators, Integral Equations Operator Theory 59 (2007), no. 4, 585-590. MR 2370050 (2009f:47037), https://doi.org/10.1007/s00020-007-1528-7
  • [26] Paul Richard Halmos, A Hilbert space problem book, 2nd ed., Graduate Texts in Mathematics, vol. 19, Springer-Verlag, New York, 1982. Encyclopedia of Mathematics and its Applications, 17. MR 675952 (84e:47001)
  • [27] Paul R. Halmos, Linear algebra problem book, The Dolciani Mathematical Expositions, vol. 16, Mathematical Association of America, Washington, DC, 1995. MR 1310775 (96e:15001)
  • [28] Domingo A. Herrero, Approximation of Hilbert space operators. Vol. 1, 2nd ed., Pitman Research Notes in Mathematics Series, vol. 224, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1989. MR 1088255 (91k:47002)
  • [29] Lars Hörmander, An introduction to complex analysis in several variables, 3rd ed., North-Holland Mathematical Library, vol. 7, North-Holland Publishing Co., Amsterdam, 1990. MR 1045639 (91a:32001)
  • [30] V. F. R. Jones, A $ {\rm II}_{1}$ factor anti-isomorphic to itself but without involutory antiautomorphisms, Math. Scand. 46 (1980), no. 1, 103-117. MR 585235 (82a:46075)
  • [31] Laurent Marcoux, On the distance between unitary orbits of weighted shifts, Trans. Amer. Math. Soc. 326 (1991), no. 2, 585-612. MR 1010887 (91k:47062), https://doi.org/10.2307/2001775
  • [32] Donal P. O'Donovan, Weighted shifts and covariance algebras, Trans. Amer. Math. Soc. 208 (1975), 1-25. MR 0385632 (52 #6492)
  • [33] N. Christopher Phillips, Continuous-trace $ C^*$-algebras not isomorphic to their opposite algebras, Internat. J. Math. 12 (2001), no. 3, 263-275. MR 1841515 (2002f:46110), https://doi.org/10.1142/S0129167X01000642
  • [34] N. Christopher Phillips, A simple separable $ C^*$-algebra not isomorphic to its opposite algebra, Proc. Amer. Math. Soc. 132 (2004), no. 10, 2997-3005 (electronic). MR 2063121 (2005b:46127), https://doi.org/10.1090/S0002-9939-04-07330-7
  • [35] Donald Sarason, Algebraic properties of truncated Toeplitz operators, Oper. Matrices 1 (2007), no. 4, 491-526. MR 2363975 (2008i:47060), https://doi.org/10.7153/oam-01-29
  • [36] Nicholas Alexander Sedlock, Properties of truncated Toeplitz operators, ProQuest LLC, Ann Arbor, MI, 2010. Thesis (Ph.D.)-Washington University in St. Louis. MR 2736740
  • [37] N. A. Sedlock, Algebras of truncated Toeplitz operators, Oper. Matrices 5 (2011), no. 2, 309-326. MR 2830601 (2012f:47112), https://doi.org/10.7153/oam-05-22
  • [38] Allen L. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, Amer. Math. Soc., Providence, R.I., 1974, pp. 49-128. Math. Surveys, No. 13. MR 0361899 (50 #14341)
  • [39] P. J. Stacey, Inductive limit decompositions of real structures in irrational rotation algebras, Indiana Univ. Math. J. 51 (2002), no. 6, 1511-1540. MR 1948458 (2004e:46077), https://doi.org/10.1512/iumj.2002.51.2042
  • [40] P. J. Stacey, Real structure in purely infinite $ C^*$-algebras, J. Operator Theory 49 (2003), no. 1, 77-84. MR 1978322 (2004c:46111)
  • [41] P. J. Stacey, Real structure in unital separable simple $ C^*$-algebras with tracial rank zero and with a unique tracial state, New York J. Math. 12 (2006), 269-273 (electronic). MR 2259241 (2007h:46071)
  • [42] P. J. Stacey, Antisymmetries of the CAR algebra, Trans. Amer. Math. Soc. 363 (2011), no. 12, 6439-6452. With an appendix by Jeffrey L. Boersema and N. Christopher Phillips. MR 2833562 (2012e:46131), https://doi.org/10.1090/S0002-9947-2011-05263-3
  • [43] Erling Størmer, On anti-automorphisms of von Neumann algebras, Pacific J. Math. 21 (1967), 349-370. MR 0212584 (35 #3455)
  • [44] Xiaohuan Wang and Zongsheng Gao, A note on Aluthge transforms of complex symmetric operators and applications, Integral Equations Operator Theory 65 (2009), no. 4, 573-580. MR 2576310 (2011c:47003), https://doi.org/10.1007/s00020-009-1719-5
  • [45] Sergey M. Zagorodnyuk, On a $ J$-polar decomposition of a bounded operator and matrices of $ J$-symmetric and $ J$-skew-symmetric operators, Banach J. Math. Anal. 4 (2010), no. 2, 11-36. MR 2606479 (2011f:47032)
  • [46] Sen Zhu and Chun Guang Li, Complex symmetry of a dense class of operators, Integral Equations Operator Theory 73 (2012), no. 2, 255-272. MR 2921067, https://doi.org/10.1007/s00020-012-1957-9
  • [47] Sen Zhu and Chun Guang Li, Complex symmetric weighted shifts, Trans. Amer. Math. Soc. 365 (2013), no. 1, 511-530. MR 2984066, https://doi.org/10.1090/S0002-9947-2012-05642-X
  • [48] Sen Zhu, Chun Guang Li, and You Qing Ji, The class of complex symmetric operators is not norm closed, Proc. Amer. Math. Soc. 140 (2012), no. 5, 1705-1708. MR 2869154, https://doi.org/10.1090/S0002-9939-2011-11345-5

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 47C10, 47A58, 47B37, 47A45

Retrieve articles in all journals with MSC (2010): 47C10, 47A58, 47B37, 47A45


Additional Information

Kunyu Guo
Affiliation: School of Mathematical Sciences, Fudan University, Shanghai 200433, People’s Republic of China
Email: kyguo@fudan.edu.cn

Youqing Ji
Affiliation: Department of Mathematics, Jilin University, Changchun 130012, People’s Republic of China
Email: jiyq@jlu.edu.cn

Sen Zhu
Affiliation: Department of Mathematics, Jilin University, Changchun 130012, People’s Republic of China
Email: senzhu@163.com

DOI: https://doi.org/10.1090/S0002-9947-2015-06215-1
Keywords: Complex symmetric operators, approximation, $C^*$-algebras, anti-automorphisms, weighted shifts, essentially normal operators
Received by editor(s): April 14, 2013
Received by editor(s) in revised form: June 7, 2013
Published electronically: February 26, 2015
Article copyright: © Copyright 2015 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society