Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Schur and Fourier multipliers of an amenable group acting on non-commutative $ L^p$-spaces

Authors: Martijn Caspers and Mikael de la Salle
Journal: Trans. Amer. Math. Soc. 367 (2015), 6997-7013
MSC (2010): Primary 43A15, 46B08, 46B28, 46B70
Published electronically: March 4, 2015
MathSciNet review: 3378821
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Consider a completely bounded Fourier multiplier $ \phi $ of a locally compact group $ G$, and take $ 1 \leq p \leq \infty $. One can associate to $ \phi $ a Schur multiplier on the Schatten classes $ \mathcal {S}_p(L^2 G)$, as well as a Fourier multiplier on $ L^p(\mathcal {L} G)$, the non-commutative $ L^p$-space of the group von Neumann algebra of $ G$. We prove that the completely bounded norm of the Schur multiplier is not greater than the completely bounded norm of the $ L^p$-Fourier multiplier. When $ G$ is amenable we show that equality holds, extending a result by Neuwirth and Ricard to non-discrete groups.

For a discrete group $ G$ and in the special case when $ p\neq 2$ is an even integer, we show the following. If there exists a map between $ L^p(\mathcal {L} G)$ and an ultraproduct of $ L^p(\mathcal {M}) \otimes \mathcal {S}_p(L^2G)$ that intertwines the Fourier multiplier with the Schur multiplier, then $ G$ must be amenable. This is an obstruction to extend the Neuwirth-Ricard result to non-amenable groups.

References [Enhancements On Off] (What's this?)

  • [1] Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223. MR 0482275 (58 #2349)
  • [2] Marek Bożejko and Gero Fendler, Herz-Schur multipliers and completely bounded multipliers of the Fourier algebra of a locally compact group, Boll. Un. Mat. Ital. A (6) 3 (1984), no. 2, 297-302 (English, with Italian summary). MR 753889 (86b:43009)
  • [3] Jean De Cannière and Uffe Haagerup, Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups, Amer. J. Math. 107 (1985), no. 2, 455-500. MR 784292 (86m:43002),
  • [4] Zeqian Chen, Quanhua Xu, and Zhi Yin, Harmonic analysis on quantum tori, Comm. Math. Phys. 322 (2013), no. 3, 755-805. MR 3079331,
  • [5] A. Connes, On the spatial theory of von Neumann algebras, J. Funct. Anal. 35 (1980), no. 2, 153-164. MR 561983 (81g:46083),
  • [6] Michel Hilsum, Les espaces $ L^{p}$ d'une algèbre de von Neumann définies par la derivée spatiale, J. Funct. Anal. 40 (1981), no. 2, 151-169 (French, with English summary). MR 609439 (83c:46053),
  • [7] Hideaki Izumi, Constructions of non-commutative $ L^p$-spaces with a complex parameter arising from modular actions, Internat. J. Math. 8 (1997), no. 8, 1029-1066. MR 1484866 (99a:46114),
  • [8] Hideki Kosaki, Applications of the complex interpolation method to a von Neumann algebra: noncommutative $ L^{p}$-spaces, J. Funct. Anal. 56 (1984), no. 1, 29-78. MR 735704 (86a:46085),
  • [9] Tim de Laat, Approximation properties for noncommutative $ L^p$-spaces associated with lattices in Lie groups, J. Funct. Anal. 264 (2013), no. 10, 2300-2322. MR 3035056,
  • [10] Vincent Lafforgue and Mikael De la Salle, Noncommutative $ L^p$-spaces without the completely bounded approximation property, Duke Math. J. 160 (2011), no. 1, 71-116. MR 2838352,
  • [11] Stefan Neuwirth and Éric Ricard, Transfer of Fourier multipliers into Schur multipliers and sumsets in a discrete group, Canad. J. Math. 63 (2011), no. 5, 1161-1187. MR 2866074 (2012g:43008),
  • [12] Gilles Pisier, Non-commutative vector valued $ L_p$-spaces and completely $ p$-summing maps, Astérisque 247 (1998), vi+131 (English, with English and French summaries). MR 1648908 (2000a:46108)
  • [13] Gilles Pisier and Quanhua Xu, Non-commutative $ L^p$-spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1459-1517. MR 1999201 (2004i:46095),
  • [14] Yves Raynaud, On ultrapowers of non commutative $ L_p$ spaces, J. Operator Theory 48 (2002), no. 1, 41-68. MR 1926043 (2003i:46069)
  • [15] M. Takesaki, Theory of operator algebras. II, Encyclopaedia of Mathematical Sciences, vol. 125, Springer-Verlag, Berlin, 2003. Operator Algebras and Non-commutative Geometry, 6. MR 1943006 (2004g:46079)
  • [16] M. Terp, $ L^p$ spaces associated with von Neumann algebras. Notes, Report No. 3a + 3b, Københavns Universitets Matematiske Institut, Juni 1981.
  • [17] Marianne Terp, Interpolation spaces between a von Neumann algebra and its predual, J. Operator Theory 8 (1982), no. 2, 327-360. MR 677418 (85b:46075)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 43A15, 46B08, 46B28, 46B70

Retrieve articles in all journals with MSC (2010): 43A15, 46B08, 46B28, 46B70

Additional Information

Martijn Caspers
Affiliation: Laboratoire de Mathématiques, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
Address at time of publication: Einsteinstrasse 62, D-48149 Münster, Germany

Mikael de la Salle
Affiliation: CNRS, Laboratoire de Mathématiques, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
Address at time of publication: ENS de Lyon, (site Sciences), 46, allée d’Italie, 69364 Lyon Cedex 07, France

Keywords: Non-commutative $L^p$-spaces, Schur multiplier, Fourier multipliers, amenability
Received by editor(s): March 5, 2013
Received by editor(s) in revised form: June 18, 2013
Published electronically: March 4, 2015
Additional Notes: The first author was supported by the ANR project ANR-2011-BS01-008-01
The second author was partially supported by the ANR projects NEUMANN and OSQPI
Article copyright: © Copyright 2015 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society