Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Scattering for the Klein-Gordon equation with quadratic and variable coefficient cubic nonlinearities


Authors: Hans Lindblad and Avy Soffer
Journal: Trans. Amer. Math. Soc. 367 (2015), 8861-8909
MSC (2010): Primary 35Qxx
DOI: https://doi.org/10.1090/S0002-9947-2014-06455-6
Published electronically: December 3, 2014
MathSciNet review: 3403074
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the 1D Klein-Gordon equation with variable coefficient cubic nonlinearity. This problem exhibits a striking resonant interaction between the spatial frequencies of the nonlinear coefficients and the temporal oscillations of the solutions. In the case where the worst of this resonant behavior is absent, we prove $ L^\infty $ scattering as well as a certain kind of strong smoothness for the solution at time-like infinity with the help of several new normal-form transformations. Some explicit examples are also given which suggest qualitatively different behavior in the case where the strongest cubic resonances are present.


References [Enhancements On Off] (What's this?)

  • [D1] Jean-Marc Delort, Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasi linéaire à données petites en dimension 1, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 1, 1-61 (French, with English and French summaries). MR 1833089 (2002h:35194), https://doi.org/10.1016/S0012-9593(00)01059-4
  • [D2] Jean-Marc Delort,
    Correction to ``Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasi linéaire à données petites en dimension 1''. Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 2, 335-345. MR 2245535 (2007c:35109)
  • [F] M. Flato, J.C.H. Simon, and E. Taflin,
    The Maxwell-Dirac equations: the Cauchy problem, asymptotic completeness and the infrared problem,
    Memoirs of the AMS 128, No. 606 (1997) (x+312 pages)
  • [H-Nau] Nakao Hayashi and Pavel I. Naumkin, Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations, Amer. J. Math. 120 (1998), no. 2, 369-389. MR 1613646 (99f:35190)
  • [H1] Lars Hörmander, Lectures on nonlinear hyperbolic differential equations, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 26, Springer-Verlag, Berlin, 1997. MR 1466700 (98e:35103)
  • [H2] Lars Hörmander, The lifespan of classical solutions of nonlinear hyperbolic equations, Pseudodifferential operators (Oberwolfach, 1986) Lecture Notes in Math., vol. 1256, Springer, Berlin, 1987, pp. 214-280. MR 897781 (88j:35024), https://doi.org/10.1007/BFb0077745
  • [Kat] Jun Kato and Fabio Pusateri, A new proof of long-range scattering for critical nonlinear Schrödinger equations, Differential Integral Equations 24 (2011), no. 9-10, 923-940. MR 2850346
  • [K1] Sergiu Klainerman, Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math. 38 (1985), no. 5, 631-641. MR 803252 (87e:35080), https://doi.org/10.1002/cpa.3160380512
  • [L1] Hans Lindblad, On the lifespan of solutions of nonlinear wave equations with small initial data, Comm. Pure Appl. Math. 43 (1990), no. 4, 445-472. MR 1047332 (91i:35129), https://doi.org/10.1002/cpa.3160430403
  • [L2] Hans Lindblad, Global solutions of nonlinear wave equations, Comm. Pure Appl. Math. 45 (1992), no. 9, 1063-1096. MR 1177476 (94a:35080), https://doi.org/10.1002/cpa.3160450902
  • [L-R] Hans Lindblad and Igor Rodnianski, The weak null condition for Einstein's equations, C. R. Math. Acad. Sci. Paris 336 (2003), no. 11, 901-906 (English, with English and French summaries). MR 1994592 (2004h:83008), https://doi.org/10.1016/S1631-073X(03)00231-0
  • [L-S1] Hans Lindblad and Avy Soffer, A remark on long range scattering for the nonlinear Klein-Gordon equation, J. Hyperbolic Differ. Equ. 2 (2005), no. 1, 77-89. MR 2134954 (2006d:35143), https://doi.org/10.1142/S0219891605000385
  • [L-S2] Hans Lindblad and Avy Soffer, A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation, Lett. Math. Phys. 73 (2005), no. 3, 249-258. MR 2188297 (2006i:35249), https://doi.org/10.1007/s11005-005-0021-y
  • [M-S] Nicholas Manton and Paul Sutcliffe, Topological solitons, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004. MR 2068924 (2006d:58020)
  • [Sh] Jalal Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math. 38 (1985), no. 5, 685-696. MR 803256 (87b:35160), https://doi.org/10.1002/cpa.3160380516
  • [St] J. Sterbenz,
    Dispersive decay for the 1D Klein-Gordon equation with variable coefficient nonlinearities,
    preprint, http://arxiv.org/abs/1307.4808 (2013).
  • [S-Taf] Jacques C. H. Simon and Erik Taflin, The Cauchy problem for nonlinear Klein-Gordon equations, Comm. Math. Phys. 152 (1993), no. 3, 433-478. MR 1213298 (94d:35110)
  • [Str] Walter A. Strauss, Dispersion of low-energy waves for two conservative equations, Arch. Rational Mech. Anal. 55 (1974), 86-92. MR 0352743 (50 #5230)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35Qxx

Retrieve articles in all journals with MSC (2010): 35Qxx


Additional Information

Hans Lindblad
Affiliation: Department of Mathematics, Johns Hopkins University, 404 Krieger Hall, 3400 N. Charles Street, Baltimore, Maryland 21218
Email: lindblad@math.jhu.edu

Avy Soffer
Affiliation: Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, New Jersey 08854
Email: soffer@math.rutgers.edu

DOI: https://doi.org/10.1090/S0002-9947-2014-06455-6
Keywords: Nonlinear KG equation, long-range scattering, normal form analysis
Received by editor(s): August 13, 2013
Received by editor(s) in revised form: April 6, 2014
Published electronically: December 3, 2014
Additional Notes: The first author was partially supported by NSF grant DMS–1237212
The second author was partially supported by NSF grant DMS–1201394
Article copyright: © Copyright 2014 American Mathematical Society

American Mathematical Society