Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 


Highest weight $ \mathfrak{sl}_2$-categorifications II: Structure theory

Author: Ivan Losev
Journal: Trans. Amer. Math. Soc. 367 (2015), 8383-8419
MSC (2010): Primary 18D99, 05E10; Secondary 16G99, 17B10, 20G05
Published electronically: April 9, 2015
MathSciNet review: 3403059
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper continues the study of highest weight categorical $ \mathfrak{sl}_2$-actions initiated in part I. We start by refining the definition given there and showing that all examples considered in part I are also highest weight categorifications in the refined sense. Then we prove that any highest weight $ \mathfrak{sl}_2$-categorification can be filtered in such a way that the successive quotients are so-called basic highest weight $ \mathfrak{sl}_2$-categorifications. For a basic highest weight categorification we determine minimal projective resolutions of standard objects. We use this, in particular, to examine the structure of tilting objects in basic categorifications and to show that the Ringel duality is given by the Rickard complex. We apply some of these structural results to categories $ \mathcal {O}$ for cyclotomic Rational Cherednik algebras.

References [Enhancements On Off] (What's this?)

  • [AM] Henning Haahr Andersen and Volodymyr Mazorchuk, Category $ \mathcal {O}$ for quantum groups, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 2, 405-431. MR 3317747,
  • [BK1] Jonathan Brundan and Alexander Kleshchev, On translation functors for general linear and symmetric groups, Proc. London Math. Soc. (3) 80 (2000), no. 1, 75-106. MR 1719176 (2000j:20080),
  • [BK2] Jonathan Brundan and Alexander Kleshchev, Representations of shifted Yangians and finite $ W$-algebras, Mem. Amer. Math. Soc. 196 (2008), no. 918, viii+107. MR 2456464 (2009i:17020),
  • [BS1] Jonathan Brundan and Catharina Stroppel, Highest weight categories arising from Khovanov's diagram algebra I: cellularity, Mosc. Math. J. 11 (2011), no. 4, 685-722, 821-822 (English, with English and Russian summaries). MR 2918294
  • [CKL] Sabin Cautis, Joel Kamnitzer, and Anthony Licata, Derived equivalences for cotangent bundles of Grassmannians via categorical $ \mathfrak{sl}_2$ actions, J. Reine Angew. Math. 675 (2013), 53-99. MR 3021447
  • [CR] Joseph Chuang and Raphaël Rouquier, Derived equivalences for symmetric groups and $ \mathfrak{sl}_2$-categorification, Ann. of Math. (2) 167 (2008), no. 1, 245-298. MR 2373155 (2008m:20011),
  • [FKK] I. B. Frenkel, M. G. Khovanov, and A. A. Kirillov Jr., Kazhdan-Lusztig polynomials and canonical basis, Transform. Groups 3 (1998), no. 4, 321-336. MR 1657524 (2000f:20071),
  • [FS] Misha Feigin and Alexey Silantyev, Singular polynomials from orbit spaces, Compos. Math. 148 (2012), no. 6, 1867-1879. MR 2999308,
  • [DG] Charles Dunkl and Stephen Griffeth, Generalized Jack polynomials and the representation theory of rational Cherednik algebras, Selecta Math. (N.S.) 16 (2010), no. 4, 791-818. MR 2734331 (2012e:16067),
  • [GGOR] Victor Ginzburg, Nicolas Guay, Eric Opdam, and Raphaël Rouquier, On the category $ \mathcal {O}$ for rational Cherednik algebras, Invent. Math. 154 (2003), no. 3, 617-651. MR 2018786 (2005f:20010),
  • [G] Stephen Griffeth, Orthogonal functions generalizing Jack polynomials, Trans. Amer. Math. Soc. 362 (2010), no. 11, 6131-6157. MR 2661511 (2011f:05327),
  • [K] Alexander Kleshchev, On decomposition numbers and branching coefficients for symmetric and special linear groups, Proc. London Math. Soc. (3) 75 (1997), no. 3, 497-558. MR 1466660 (98g:20026),
  • [L1] Ivan Losev, Highest weight $ \mathfrak{sl}_2$-categorifications I: crystals, Math. Z. 274 (2013), no. 3-4, 1231-1247. MR 3078265,
  • [L2] I. Losev, Proof of Varagnolo-Vasserot conjecture on cyclotomic categories $ \mathcal {O}$. arXiv:1305.4894.
  • [LW] I. Losev and B. Webster, On uniqueness of tensor products of irreducible categorifications, Selecta Math., to appear.
  • [LM] Sinéad Lyle and Andrew Mathas, Blocks of cyclotomic Hecke algebras, Adv. Math. 216 (2007), no. 2, 854-878. MR 2351381 (2008m:20012),
  • [MS] Volodymyr Mazorchuk and Catharina Stroppel, Translation and shuffling of projectively presentable modules and a categorification of a parabolic Hecke module, Trans. Amer. Math. Soc. 357 (2005), no. 7, 2939-2973 (electronic). MR 2139933 (2006g:17012),
  • [R1] Raphaël Rouquier, $ q$-Schur algebras and complex reflection groups, Mosc. Math. J. 8 (2008), no. 1, 119-158, 184 (English, with English and Russian summaries). MR 2422270 (2010b:20081)
  • [R2] R. Rouquier, 2-Kac-Moody algebras. arXiv:0812.5023.
  • [RSVV] R. Rouquier, P. Shan, M. Varagnolo, and E. Vasserot, Categorification and cyclotomic rational double affine Hecke algebras. arXiv:1305.4456.
  • [S] Peng Shan, Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 1, 147-182 (English, with English and French summaries). MR 2760196 (2012c:20009)
  • [SV] P. Shan and E. Vasserot, Heisenberg algebras and rational double affine Hecke algebras, J. Amer. Math. Soc. 25 (2012), no. 4, 959-1031. MR 2947944,
  • [SW] C. Stroppel and B. Webster, Quiver Schur algebras and q-Fock space. arXiv:1110.1115.
  • [VV] M. Varagnolo and E. Vasserot, Cyclotomic double affine Hecke algebras and affine parabolic category $ \mathcal {O}$, Adv. Math. 225 (2010), no. 3, 1523-1588. MR 2673739,
  • [W] B. Webster, Knot invariants and higher representation theory I: diagrammatic and geometric categorification of tensor products. arXiv:1001.2020.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 18D99, 05E10, 16G99, 17B10, 20G05

Retrieve articles in all journals with MSC (2010): 18D99, 05E10, 16G99, 17B10, 20G05

Additional Information

Ivan Losev
Affiliation: Department of Mathematics, Northeastern University, Boston, Massachusetts 02115

Received by editor(s): September 15, 2012
Received by editor(s) in revised form: May 29, 2013, and September 12, 2013
Published electronically: April 9, 2015
Additional Notes: This work was supported by the NSF grants DMS-0900907 and DMS-1161584
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society