Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

The adiabatic limit of wave map flow on a two-torus


Author: J. M. Speight
Journal: Trans. Amer. Math. Soc. 367 (2015), 8997-9026
MSC (2010): Primary 58Z05, 58J90
DOI: https://doi.org/10.1090/tran/6538
Published electronically: April 8, 2015
MathSciNet review: 3403078
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The $ S^2$ valued wave map flow on a Lorentzian domain $ \mathbb{R}\times \Sigma $, where $ \Sigma $ is any flat two-torus, is studied. The Cauchy problem with initial data tangent to the moduli space of holomorphic maps $ \Sigma \rightarrow S^2$ is considered, in the limit of small initial velocity. It is proved that wave maps, in this limit, converge in a precise sense to geodesics in the moduli space of holomorphic maps, with respect to the $ L^2$ metric. This establishes, in a rigorous setting, a long-standing informal conjecture of Ward.


References [Enhancements On Off] (What's this?)

  • [1] Piotr Bizoń, Tadeusz Chmaj, and Zbisław Tabor, Formation of singularities for equivariant $ (2+1)$-dimensional wave maps into the 2-sphere, Nonlinearity 14 (2001), no. 5, 1041-1053. MR 1862811 (2003b:58043), https://doi.org/10.1088/0951-7715/14/5/308
  • [2] S. K. Donaldson and P. B. Kronheimer, The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1990. MR 1079726 (92a:57036)
  • [3] J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), no. 1, 1-68. MR 495450 (82b:58033), https://doi.org/10.1112/blms/10.1.1
  • [4] J. Eells and J. C. Wood, Restrictions on harmonic maps of surfaces, Topology 15 (1976), no. 3, 263-266. MR 0420708 (54 #8720)
  • [5] M. Haskins and J. M. Speight, The geodesic approximation for lump dynamics and coercivity of the Hessian for harmonic maps, J. Math. Phys. 44 (2003), no. 8, 3470-3494. Integrability, topological solitons and beyond. MR 2006760 (2005e:58020), https://doi.org/10.1063/1.1586480
  • [6] N. J. Hitchin, G. B. Segal, and R. S. Ward, Integrable systems, Twistors, loop groups, and Riemann surfaces, lectures from the Instructional Conference held at the University of Oxford, Oxford, September 1997, Oxford Graduate Texts in Mathematics, vol. 4, The Clarendon Press, Oxford University Press, New York, 1999. MR 1723384 (2000g:37003)
  • [7] Fritz John, Partial differential equations, 3rd ed., Applied Mathematical Sciences, vol. 1, Springer-Verlag, New York-Berlin, 1978. MR 514404 (80f:35001)
  • [8] J. Krieger, W. Schlag, and D. Tataru, Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math. 171 (2008), no. 3, 543-615. MR 2372807 (2009b:58061), https://doi.org/10.1007/s00222-007-0089-3
  • [9] Derek F. Lawden, Elliptic functions and applications, Applied Mathematical Sciences, vol. 80, Springer-Verlag, New York, 1989. MR 1007595 (90h:33001)
  • [10] Robert Leese, Low-energy scattering of solitons in the $ {\bf C}{\rm P}^1$ model, Nuclear Phys. B 344 (1990), no. 1, 33-72. MR 1071448 (91h:81082), https://doi.org/10.1016/0550-3213(90)90684-6
  • [11] Robert A. Leese, Michel Peyrard, and Wojciech J. Zakrzewski, Soliton stability in the $ {\rm O}(3)\ \sigma $-model in $ (2+1)$ dimensions, Nonlinearity 3 (1990), no. 2, 387-412. MR 1054581 (91i:58033)
  • [12] André Lichnerowicz, Applications harmoniques et variétés kähleriennes, Symposia Mathematica, Vol. III (INDAM, Rome, 1968/69) Academic Press, London, 1968/1969, pp. 341-402 (French). MR 0262993 (41 #7598)
  • [13] Jean Marie Linhart and Lorenzo A. Sadun, Fast and slow blowup in the $ S^2$ $ \sigma $-model and the $ (4+1)$-dimensional Yang-Mills model, Nonlinearity 15 (2002), no. 2, 219-238. MR 1888849 (2002m:81156), https://doi.org/10.1088/0951-7715/15/2/301
  • [14] J. A. McGlade and J. M. Speight, Slow equivariant lump dynamics on the two sphere, Nonlinearity 19 (2006), no. 2, 441-452. MR 2199397 (2006k:53147), https://doi.org/10.1088/0951-7715/19/2/011
  • [15] N. S. Manton, A remark on the scattering of BPS monopoles, Phys. Lett. B 110 (1982), no. 1, 54-56. MR 647883 (83b:81094), https://doi.org/10.1016/0370-2693(82)90950-9
  • [16] Nicholas Manton and Paul Sutcliffe, Topological solitons, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2004. MR 2068924 (2006d:58020)
  • [17] Yu. N. Ovchinnikov and I. M. Sigal, On collapse of wave maps, Phys. D 240 (2011), no. 17, 1311-1324. MR 2831768 (2012m:58006), https://doi.org/10.1016/j.physd.2011.04.014
  • [18] Pierre Raphaël and Igor Rodnianski, Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems, Publ. Math. Inst. Hautes Études Sci. , posted on (2012), 1-122. MR 2929728, https://doi.org/10.1007/s10240-011-0037-z
  • [19] Igor Rodnianski and Jacob Sterbenz, On the formation of singularities in the critical $ {\rm O}(3)$ $ \sigma $-model, Ann. of Math. (2) 172 (2010), no. 1, 187-242. MR 2680419 (2011i:58023), https://doi.org/10.4007/annals.2010.172.187
  • [20] L. A. Sadun and J. M. Speight, Geodesic incompleteness in the $ \mathbf {C}{\rm P}^1$ model on a compact Riemann surface, Lett. Math. Phys. 43 (1998), no. 4, 329-334. MR 1620737 (99m:58039), https://doi.org/10.1023/A:1007433724535
  • [21] Jalal Shatah and Michael Struwe, Geometric wave equations, Courant Lecture Notes in Mathematics, vol. 2, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1998. MR 1674843 (2000i:35135)
  • [22] J. M. Speight, Low-energy dynamics of a $ {\bf C}{\rm P}^1$ lump on the sphere, J. Math. Phys. 36 (1995), no. 2, 796-813. MR 1312081 (96a:58079), https://doi.org/10.1063/1.531157
  • [23] J. M. Speight, Lump dynamics in the $ {\bf C}{\rm P}^1$ model on the torus, Comm. Math. Phys. 194 (1998), no. 3, 513-539. MR 1631469 (99h:58027), https://doi.org/10.1007/s002200050367
  • [24] J. M. Speight, The $ L^2$ geometry of spaces of harmonic maps $ S^2\to S^2$ and $ {\mathbb{R}}{\rm P}^2\to {\mathbb{R}}\rm P^2$, J. Geom. Phys. 47 (2003), no. 2-3, 343-368. MR 1991480 (2004f:53077), https://doi.org/10.1016/S0393-0440(02)00227-9
  • [25] D. Stuart, Dynamics of abelian Higgs vortices in the near Bogomolny regime, Comm. Math. Phys. 159 (1994), no. 1, 51-91. MR 1257242 (95a:58027)
  • [26] D. Stuart, The geodesic approximation for the Yang-Mills-Higgs equations, Comm. Math. Phys. 166 (1994), no. 1, 149-190. MR 1309545 (96e:58037)
  • [27] David M. A. Stuart, Analysis of the adiabatic limit for solitons in classical field theory, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007), no. 2087, 2753-2781. MR 2360179 (2009g:70045), https://doi.org/10.1098/rspa.2007.0130
  • [28] Hajime Urakawa, Calculus of variations and harmonic maps, Translations of Mathematical Monographs, vol. 132, American Mathematical Society, Providence, RI, 1993. Translated from the 1990 Japanese original by the author. MR 1252178 (95c:58050)
  • [29] R. S. Ward, Slowly-moving lumps in the $ {\bf C}{\rm P}^1$ model in $ (2+1)$ dimensions, Phys. Lett. B 158 (1985), no. 5, 424-428. MR 802039 (87h:58176), https://doi.org/10.1016/0370-2693(85)90445-9

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 58Z05, 58J90

Retrieve articles in all journals with MSC (2010): 58Z05, 58J90


Additional Information

J. M. Speight
Affiliation: School of Mathematics, University of Leeds, Leeds LS2 9JT, England
Email: speight@maths.leeds.ac.uk

DOI: https://doi.org/10.1090/tran/6538
Received by editor(s): May 1, 2013
Received by editor(s) in revised form: July 8, 2014
Published electronically: April 8, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society