Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Curve counting invariants for crepant resolutions


Authors: Jim Bryan and David Steinberg
Journal: Trans. Amer. Math. Soc. 368 (2016), 1583-1619
MSC (2010): Primary 14N35
DOI: https://doi.org/10.1090/tran/6377
Published electronically: June 15, 2015
MathSciNet review: 3449219
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct curve counting invariants for a Calabi-Yau threefold $ Y$ equipped with a dominant birational morphism $ \pi :Y \to X$. Our invariants generalize the stable pair invariants of Pandharipande and Thomas which occur for the case when $ \pi :Y\to Y$ is the identity. Our main result is a PT/DT-type formula relating the partition function of our invariants to the Donaldson-Thomas partition function in the case when $ Y$ is a crepant resolution of $ X$, the coarse space of a Calabi-Yau orbifold $ \mathcal {X}$ satisfying the hard Lefschetz condition. In this case, our partition function is equal to the Pandharipande-Thomas partition function of the orbifold $ \mathcal {X}$. Our methods include defining a new notion of stability for sheaves which depends on the morphism $ \pi $. Our notion generalizes slope stability which is recovered in the case where $ \pi $ is the identity on $ Y$.


References [Enhancements On Off] (What's this?)

  • [1] Arend Bayer, Polynomial Bridgeland stability conditions and the large volume limit, Geom. Topol. 13 (2009), no. 4, 2389-2425. MR 2515708 (2010h:14026), https://doi.org/10.2140/gt.2009.13.2389
  • [2] A. Bayer, (In preparation).
  • [3] Kai Behrend, Donaldson-Thomas type invariants via microlocal geometry, Ann. of Math. (2) 170 (2009), no. 3, 1307-1338. MR 2600874 (2011d:14098), https://doi.org/10.4007/annals.2009.170.1307
  • [4] Kai Behrend and Jim Bryan, Super-rigid Donaldson-Thomas invariants, Math. Res. Lett. 14 (2007), no. 4, 559-571. MR 2335983 (2008m:14108), https://doi.org/10.4310/MRL.2007.v14.n4.a2
  • [5] K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), no. 1, 45-88. MR 1437495 (98e:14022), https://doi.org/10.1007/s002220050136
  • [6] Kai Behrend and Barbara Fantechi, Symmetric obstruction theories and Hilbert schemes of points on threefolds, Algebra Number Theory 2 (2008), no. 3, 313-345. MR 2407118 (2009c:14006), https://doi.org/10.2140/ant.2008.2.313
  • [7] A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5-171 (French). MR 751966 (86g:32015)
  • [8] Samuel Boissière and Alessandra Sarti, Contraction of excess fibres between the McKay correspondences in dimensions two and three, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 6, 1839-1861 (English, with English and French summaries). MR 2377888 (2008k:14032)
  • [9] Tom Bridgeland, Flops and derived categories, Invent. Math. 147 (2002), no. 3, 613-632. MR 1893007 (2003h:14027), https://doi.org/10.1007/s002220100185
  • [10] Tom Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2) 166 (2007), no. 2, 317-345. MR 2373143 (2009c:14026), https://doi.org/10.4007/annals.2007.166.317
  • [11] Tom Bridgeland, An introduction to motivic Hall algebras, Adv. Math. 229 (2012), no. 1, 102-138. MR 2854172 (2012j:14018), https://doi.org/10.1016/j.aim.2011.09.003
  • [12] Tom Bridgeland, Hall algebras and curve-counting invariants, J. Amer. Math. Soc. 24 (2011), no. 4, 969-998. MR 2813335 (2012f:14109), https://doi.org/10.1090/S0894-0347-2011-00701-7
  • [13] Tom Bridgeland, Alastair King, and Miles Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), no. 3, 535-554 (electronic). MR 1824990 (2002f:14023), https://doi.org/10.1090/S0894-0347-01-00368-X
  • [14] Jim Bryan, Charles Cadman, and Ben Young, The orbifold topological vertex, Adv. Math. 229 (2012), no. 1, 531-595. MR 2854183, https://doi.org/10.1016/j.aim.2011.09.008
  • [15] Jim Bryan and Amin Gholampour, The quantum McKay correspondence for polyhedral singularities, Invent. Math. 178 (2009), no. 3, 655-681. MR 2551767 (2011e:14028), https://doi.org/10.1007/s00222-009-0212-8
  • [16] Jim Bryan and Tom Graber, The crepant resolution conjecture, Algebraic geometry--Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 23-42. MR 2483931 (2009m:14083), https://doi.org/10.1090/pspum/080.1/2483931
  • [17] J. Calabrese, Donaldson-Thomas invariants and flops, preprint arXiv: math.AG/1111.1670v1.
  • [18] J. Calabrese, On the crepant resolution conjecture for Donaldson-Thomas invariants, preprint arXiv: math.AG/1206.6524v1.
  • [19] Jiun-Cheng Chen and Hsian-Hua Tseng, A note on derived McKay correspondence, Math. Res. Lett. 15 (2008), no. 3, 435-445. MR 2407221 (2009e:14002), https://doi.org/10.4310/MRL.2008.v15.n3.a4
  • [20] Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725 (80b:14001)
  • [21] Alexander Grothendieck, Techniques de construction et théorèmes d'existence en géométrie algébrique. IV. Les schémas de Hilbert, Séminaire Bourbaki, Vol. 6, Soc. Math. France, Paris, 1995, pp. Exp. No. 221, 249-276 (French). MR 1611822
  • [22] Dieter Happel, Idun Reiten, and Sverre O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88. MR 1327209 (97j:16009), https://doi.org/10.1090/memo/0575
  • [23] G. Harder and M. S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212 (1974/75), 215-248. MR 0364254 (51 #509)
  • [24] Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870 (98g:14012)
  • [25] Dominic Joyce, Configurations in abelian categories. I. Basic properties and moduli stacks, Adv. Math. 203 (2006), no. 1, 194-255. MR 2231046 (2007b:14023), https://doi.org/10.1016/j.aim.2005.04.008
  • [26] Dominic Joyce, Configurations in abelian categories. II. Ringel-Hall algebras, Adv. Math. 210 (2007), no. 2, 635-706. MR 2303235 (2008f:14022), https://doi.org/10.1016/j.aim.2006.07.006
  • [27] Dominic Joyce, Configurations in abelian categories. III. Stability conditions and identities, Adv. Math. 215 (2007), no. 1, 153-219. MR 2354988 (2009d:18015a), https://doi.org/10.1016/j.aim.2007.04.002
  • [28] Dominic Joyce, Configurations in abelian categories. IV. Invariants and changing stability conditions, Adv. Math. 217 (2008), no. 1, 125-204. MR 2357325 (2009d:18015b), https://doi.org/10.1016/j.aim.2007.06.011
  • [29] Dominic Joyce, Motivic invariants of Artin stacks and `stack functions', Q. J. Math. 58 (2007), no. 3, 345-392. MR 2354923 (2010b:14004), https://doi.org/10.1093/qmath/ham019
  • [30] Dominic Joyce and Yinan Song, A theory of generalized Donaldson-Thomas invariants, Mem. Amer. Math. Soc. 217 (2012), no. 1020, iv+199. MR 2951762, https://doi.org/10.1090/S0065-9266-2011-00630-1
  • [31] S. Kleiman, Les Theoremes de finitude pour le foncteur de Picard, SGA de Bois Maris 1966/67, exp XIII.
  • [32] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, preprint arXiv: math.AG/0811.2435v1.
  • [33] Joseph Le Potier, Systèmes cohérents et structures de niveau, Astérisque 214 (1993), 143 (French, with English and French summaries). MR 1244404 (95e:14005)
  • [34] M. Levine and R. Pandharipande, Algebraic cobordism revisited, Invent. Math. 176 (2009), no. 1, 63-130. MR 2485880 (2010h:14033), https://doi.org/10.1007/s00222-008-0160-8
  • [35] Jun Li, Zero dimensional Donaldson-Thomas invariants of threefolds, Geom. Topol. 10 (2006), 2117-2171. MR 2284053 (2007k:14116), https://doi.org/10.2140/gt.2006.10.2117
  • [36] D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory. I, Compos. Math. 142 (2006), no. 5, 1263-1285. MR 2264664 (2007i:14061), https://doi.org/10.1112/S0010437X06002302
  • [37] Barry Mitchell, The full imbedding theorem, Amer. J. Math. 86 (1964), 619-637. MR 0167511 (29 #4783)
  • [38] David Mumford, Lectures on curves on an algebraic surface, with a section by G. M. Bergman. Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. MR 0209285 (35 #187)
  • [39] Christian Okonek, Michael Schneider, and Heinz Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston, Mass., 1980. MR 561910 (81b:14001)
  • [40] R. Pandharipande and R. P. Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2009), no. 2, 407-447. MR 2545686 (2010h:14089), https://doi.org/10.1007/s00222-009-0203-9
  • [41] Rahul Pandharipande and Richard P. Thomas, The 3-fold vertex via stable pairs, Geom. Topol. 13 (2009), no. 4, 1835-1876. MR 2497313 (2010a:14091), https://doi.org/10.2140/gt.2009.13.1835
  • [42] R. Pandharipande and R. P. Thomas, Stable pairs and BPS invariants, J. Amer. Math. Soc. 23 (2010), no. 1, 267-297. MR 2552254 (2010i:14104), https://doi.org/10.1090/S0894-0347-09-00646-8
  • [43] M. Reineke, Torsion pairs induced from Harder-Narasimhan filtration, www.math.uni-bielefeld.de/~sek/select/fahrtorsion.pdf, November 2007.
  • [44] R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on $ K3$ fibrations, J. Differential Geom. 54 (2000), no. 2, 367-438. MR 1818182 (2002b:14049)
  • [45] Yukinobu Toda, Limit stable objects on Calabi-Yau 3-folds, Duke Math. J. 149 (2009), no. 1, 157-208. MR 2541209 (2011b:14043), https://doi.org/10.1215/00127094-2009-038
  • [46] Yukinobu Toda, Curve counting theories via stable objects II: DT/ncDT flop formula, J. Reine Angew. Math. 675 (2013), 1-51. MR 3021446, https://doi.org/10.1515/CRELLE.2011.176
  • [47] Cumrun Vafa, String vacua and orbifoldized LG models, Modern Phys. Lett. A 4 (1989), no. 12, 1169-1185. MR 1016963 (91g:81128), https://doi.org/10.1142/S0217732389001350
  • [48] Michel Van den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004), no. 3, 423-455. MR 2057015 (2005e:14023), https://doi.org/10.1215/S0012-7094-04-12231-6
  • [49] Eckart Viehweg, Rational singularities of higher dimensional schemes, Proc. Amer. Math. Soc. 63 (1977), no. 1, 6-8. MR 0432637 (55 #5624)
  • [50] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324 (95f:18001)
  • [51] Eric Zaslow, Topological orbifold models and quantum cohomology rings, Comm. Math. Phys. 156 (1993), no. 2, 301-331. MR 1233848 (94i:32045)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14N35

Retrieve articles in all journals with MSC (2010): 14N35


Additional Information

Jim Bryan
Affiliation: Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
Email: jbryan@math.ubc.ca

David Steinberg
Affiliation: Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
Address at time of publication: Department of Mathematics, Fenton Hall, University of Oregon, Eugene, Oregon 97403-1222
Email: dsteinbe@math.ubc.ca, dcstein@uoregon.edu

DOI: https://doi.org/10.1090/tran/6377
Received by editor(s): August 20, 2012
Received by editor(s) in revised form: December 18, 2013
Published electronically: June 15, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society