Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

On Dyson's crank conjecture and the uniform asymptotic behavior of certain inverse theta functions


Authors: Kathrin Bringmann and Jehanne Dousse
Journal: Trans. Amer. Math. Soc. 368 (2016), 3141-3155
MSC (2010): Primary 05A17, 11F03, 11F30, 11F50, 11P55, 11P82
DOI: https://doi.org/10.1090/tran/6409
Published electronically: November 17, 2015
MathSciNet review: 3451872
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove a longstanding conjecture by Freeman Dyson concerning the limiting shape of the crank generating function. We fit this function in a more general family of inverse theta functions which play a key role in physics.


References [Enhancements On Off] (What's this?)

  • [1] George E. Andrews and F. G. Garvan, Dyson's crank of a partition, Bull. Amer. Math. Soc. (N.S.) 18 (1988), no. 2, 167-171. MR 929094 (89b:11079), https://doi.org/10.1090/S0273-0979-1988-15637-6
  • [2] A. O. L. Atkin and P. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. (3) 4 (1954), 84-106. MR 0060535 (15,685d)
  • [3] George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958 (2000g:33001)
  • [4] G. Arken, Modified Bessel functions, Mathematical Methods for Physicists, 3rd ed., Orlando, FL: Academic Press (1985), 610-616.
  • [5] Kathrin Bringmann, Karl Mahlburg, and Robert C. Rhoades, Asymptotics for rank and crank moments, Bull. Lond. Math. Soc. 43 (2011), no. 4, 661-672. MR 2820152 (2012k:11163), https://doi.org/10.1112/blms/bdq129
  • [6] K. Bringmann and J. Manschot, Asymptotic formulas for coefficients of inverse theta functions, submitted for publication.
  • [7] Kathrin Bringmann and Ken Ono, Dyson's ranks and Maass forms, Ann. of Math. (2) 171 (2010), no. 1, 419-449. MR 2630043 (2011e:11165), https://doi.org/10.4007/annals.2010.171.419
  • [8] F. J. Dyson, Some guesses in the theory of partitions, Eureka 8 (1944), 10-15. MR 3077150
  • [9] Freeman J. Dyson, Mappings and symmetries of partitions, J. Combin. Theory Ser. A 51 (1989), no. 2, 169-180. MR 1001259 (90f:05009), https://doi.org/10.1016/0097-3165(89)90043-5
  • [10] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomi, Higher transcendental functions, Vol. I, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla. (1981)
  • [11] Amanda Folsom and Riad Masri, Equidistribution of Heegner points and the partition function, Math. Ann. 348 (2010), no. 2, 289-317. MR 2672303 (2011m:11208), https://doi.org/10.1007/s00208-010-0478-6
  • [12] F. G. Garvan, New combinatorial interpretations of Ramanujan's partition congruences mod $ 5,7$ and $ 11$, Trans. Amer. Math. Soc. 305 (1988), no. 1, 47-77. MR 920146 (89b:11081), https://doi.org/10.2307/2001040
  • [13] Lothar Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface, Math. Ann. 286 (1990), no. 1-3, 193-207. MR 1032930 (91h:14007), https://doi.org/10.1007/BF01453572
  • [14] Paul Hammond and Richard Lewis, Congruences in ordered pairs of partitions, Int. J. Math. Math. Sci. 45-48 (2004), 2509-2512. MR 2102870 (2005f:11234), https://doi.org/10.1155/S0161171204311439
  • [15] G. Hardy and S. Ramanujan, Asymptotic formulae for the distribution of integers of various types, Proc. Lond. Math. Soc. 16 (1918), 112-132.
  • [16] T. Hausel and Rodriguez-Villegas, Cohomology of large semiprojective hyperkaehler varieties, preprint.
  • [17] B. Kim, E. Kim, and J. Seo, Asymptotics for $ q$-expansions involving partial theta functions, in preparation.
  • [18] D. H. Lehmer, On the remainders and convergence of the series for the partition function, Trans. Amer. Math. Soc. 46 (1939), 362-373. MR 0000410 (1,69c)
  • [19] Karl Mahlburg, Partition congruences and the Andrews-Garvan-Dyson crank, Proc. Natl. Acad. Sci. USA 102 (2005), no. 43, 15373-15376 (electronic). MR 2188922 (2006k:11200), https://doi.org/10.1073/pnas.0506702102
  • [20] Hans Rademacher, Topics in analytic number theory, Springer-Verlag, New York-Heidelberg, 1973. Edited by E. Grosswald, J. Lehner and M. Newman; Die Grundlehren der mathematischen Wissenschaften, Band 169. MR 0364103 (51 #358)
  • [21] Hans Rademacher and Herbert S. Zuckerman, On the Fourier coefficients of certain modular forms of positive dimension, Ann. of Math. (2) 39 (1938), no. 2, 433-462. MR 1503417, https://doi.org/10.2307/1968796
  • [22] S. Ramanujan, Congruence properties of partitions, Math. Z. 9 (1921), no. 1-2, 147-153. MR 1544457, https://doi.org/10.1007/BF01378341
  • [23] E. Maitland Wright, Asymptotic Partition Formulae: (II) Weighted Partitions, Proc. London Math. Soc. S2-36, no. 1, 117. MR 1575956, https://doi.org/10.1112/plms/s2-36.1.117
  • [24] E. M. Wright, Stacks. II, Quart. J. Math. Oxford Ser. (2) 22 (1971), 107-116. MR 0282940 (44 #174)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 05A17, 11F03, 11F30, 11F50, 11P55, 11P82

Retrieve articles in all journals with MSC (2010): 05A17, 11F03, 11F30, 11F50, 11P55, 11P82


Additional Information

Kathrin Bringmann
Affiliation: Mathematical Institute, University of Cologne, Weyertal 86-90, 50931 Cologne, Germany
Email: kbringma@math.uni-koeln.de

Jehanne Dousse
Affiliation: LIAFA, Universite Denis Diderot - Paris 7, 75205 Paris Cedex 13, France
Email: jehanne.dousse@liafa.univ-paris-diderot.fr

DOI: https://doi.org/10.1090/tran/6409
Received by editor(s): January 24, 2014
Received by editor(s) in revised form: February 19, 2014
Published electronically: November 17, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society