Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Arcs, balls and spheres that cannot be attractors in $ \mathbb{R}^3$


Author: J. J. Sánchez-Gabites
Journal: Trans. Amer. Math. Soc. 368 (2016), 3591-3627
MSC (2010): Primary 54H20, 37B25, 37E99
DOI: https://doi.org/10.1090/tran/6570
Published electronically: June 24, 2015
MathSciNet review: 3451887
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For any compact set $ K \subseteq \mathbb{R}^3$ we define a number $ r(K)$ that is either a nonnegative integer or $ \infty $. Intuitively, $ r(K)$ provides some information on how wildly $ K$ sits in $ \mathbb{R}^3$. We show that attractors for discrete or continuous dynamical systems have finite $ r$ and then prove that certain arcs, balls and spheres cannot be attractors by showing that their $ r$ is infinite.


References [Enhancements On Off] (What's this?)

  • [1] J. W. Alexander,
    An example of a simply connected surface bounding a region which is not simply connected,
    Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 8-10.
  • [2] W. A. Blankinship and R. H. Fox, Remarks on certain pathological open subsets of $ 3$-space and their fundamental groups, Proc. Amer. Math. Soc. 1 (1950), 618-624. MR 0042120 (13,57a)
  • [3] Karol Borsuk, Theory of shape, Monografie Matematyczne, Tom 59, PWN--Polish Scientific Publishers, Warsaw, 1975. MR 0418088 (54 #6132)
  • [4] Morton Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331-341. MR 0133812 (24 #A3637)
  • [5] Robert Connelly, A new proof of Brown's collaring theorem, Proc. Amer. Math. Soc. 27 (1971), 180-182. MR 0267588 (42 #2490)
  • [6] Robert J. Daverman, Decompositions of manifolds, Pure and Applied Mathematics, vol. 124, Academic Press, Inc., Orlando, FL, 1986. MR 872468 (88a:57001)
  • [7] A. Eden, C. Foias, B. Nicolaenko, and R. Temam, Exponential attractors for dissipative evolution equations, RAM: Research in Applied Mathematics, vol. 37, Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. MR 1335230 (96i:34148)
  • [8] Ralph H. Fox and Emil Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979-990. MR 0027512 (10,317g)
  • [9] Barnabas M. Garay, Strong cellularity and global asymptotic stability, Fund. Math. 138 (1991), no. 2, 147-154. MR 1124542 (92h:54053)
  • [10] Bernd Günther, A compactum that cannot be an attractor of a self-map on a manifold, Proc. Amer. Math. Soc. 120 (1994), no. 2, 653-655. MR 1170544 (94d:55023), https://doi.org/10.2307/2159910
  • [11] Bernd Günther and Jack Segal, Every attractor of a flow on a manifold has the shape of a finite polyhedron, Proc. Amer. Math. Soc. 119 (1993), no. 1, 321-329. MR 1170545 (93k:54044), https://doi.org/10.2307/2159860
  • [12] Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371 (89g:58059)
  • [13] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354 (2002k:55001)
  • [14] John Hempel, $ 3$-Manifolds, Ann. of Math. Studies, No. 86, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. MR 0415619 (54 #3702)
  • [15] J. F. P. Hudson, Piecewise linear topology, University of Chicago Lecture Notes, prepared with the assistance of J. L. Shaneson and J. Lees, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0248844 (40 #2094)
  • [16] Anatole Katok and Boris Hasselblatt, Introduction to the modern theory of dynamical systems, with a supplementary chapter by Katok and Leonardo Mendoza, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. MR 1326374 (96c:58055)
  • [17] Edwin E. Moise, Geometric topology in dimensions $ 2$ and $ 3$, Graduate Texts in Mathematics, Vol. 47, Springer-Verlag, New York-Heidelberg, 1977. MR 0488059 (58 #7631)
  • [18] M. A. Morón, J. J. Sánchez-Gabites, and J. M. R. Sanjurjo, Topology and dynamics of unstable attractors, Fund. Math. 197 (2007), 239-252. MR 2365890 (2008j:37032), https://doi.org/10.4064/fm197-0-11
  • [19] James R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, CA, 1984. MR 755006 (85m:55001)
  • [20] Eleonora Pinto de Moura, James C. Robinson, and J. J. Sánchez-Gabites, Embedding of global attractors and their dynamics, Proc. Amer. Math. Soc. 139 (2011), no. 10, 3497-3512. MR 2813382 (2012h:37058), https://doi.org/10.1090/S0002-9939-2011-10759-7
  • [21] James C. Robinson, Global attractors: topology and finite-dimensional dynamics, J. Dynam. Differential Equations 11 (1999), no. 3, 557-581. MR 1693866 (2000k:37123), https://doi.org/10.1023/A:1021918004832
  • [22] J. C. Robinson and J. J. Sánchez-Gabites, On finite-dimensional attractors of homeomorphisms, 2013.
    Preprint.
  • [23] A. V. Romanov, Finite-dimensional limit dynamics of dissipative parabolic equations, Mat. Sb. 191 (2000), no. 3, 99-112 (Russian, with Russian summary); English transl., Sb. Math. 191 (2000), no. 3-4, 415-429. MR 1773256 (2001f:37133), https://doi.org/10.1070/SM2000v191n03ABEH000466
  • [24] Francisco R. Ruiz del Portal and J. J. Sánchez-Gabites, Čech cohomology of attractors of discrete dynamical systems, J. Differential Equations 257 (2014), no. 8, 2826-2845. MR 3249272, https://doi.org/10.1016/j.jde.2014.05.055
  • [25] J. J. Sánchez-Gabites, On the shape of attractors for discrete dynamical systems, 2010. Preprint.
  • [26] J. J. Sánchez-Gabites, Unstable attractors in manifolds, Trans. Amer. Math. Soc. 362 (2010), no. 7, 3563-3589. MR 2601600 (2011b:37025), https://doi.org/10.1090/S0002-9947-10-05061-0
  • [27] J. J. Sánchez-Gabites, How strange can an attractor for a dynamical system in a 3-manifold look?, Nonlinear Anal. 74 (2011), no. 17, 6162-6185. MR 2833386, https://doi.org/10.1016/j.na.2011.05.095
  • [28] Carl D. Sikkema, A duality between certain spheres and arcs in $ S^{3}$, Trans. Amer. Math. Soc. 122 (1966), 399-415. MR 0199851 (33 #7991)
  • [29] Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0210112 (35 #1007)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 54H20, 37B25, 37E99

Retrieve articles in all journals with MSC (2010): 54H20, 37B25, 37E99


Additional Information

J. J. Sánchez-Gabites
Affiliation: Facultad de Ciencias Económicas y Empresariales, Universidad Autónoma de Madrid, Campus Universitario de Cantoblanco, 28049 Madrid, España
Email: JaimeJ.Sanchez@uam.es

DOI: https://doi.org/10.1090/tran/6570
Received by editor(s): June 20, 2013
Received by editor(s) in revised form: May 14, 2014
Published electronically: June 24, 2015
Additional Notes: The author was partially supported by MICINN (grant MTM 2009-07030).
The author wishes to express his deepest gratitude to Professor Rafael Ortega (Universidad de Granada) for his generous support and encouragement during the writing of this paper
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society