Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Transitive projective planes and insoluble groups


Author: Nick Gill
Journal: Trans. Amer. Math. Soc. 368 (2016), 3017-3057
MSC (2010): Primary 20B25, 51A35
DOI: https://doi.org/10.1090/tran/6366
Published electronically: January 6, 2016
MathSciNet review: 3451868
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Suppose that a group $ G$ acts transitively on the points of $ \mathcal {P}$, a finite non-Desarguesian projective plane. We prove that if $ G$ is insoluble, then $ G/O(G)$ is isomorphic to $ \mathrm {SL}_2(5)$ or $ \mathrm {SL}_2(5).2$.


References [Enhancements On Off] (What's this?)

  • [Asc84] M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math. 76 (1984), no. 3, 469-514. MR 746539 (86a:20054), https://doi.org/10.1007/BF01388470
  • [Asc00] M. Aschbacher, Finite group theory, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 10, Cambridge University Press, Cambridge, 2000. MR 1777008 (2001c:20001)
  • [BGL77] N. Burgoyne, R. Griess, and R. Lyons, Maximal subgroups and automorphisms of Chevalley groups, Pacific J. Math. 71 (1977), no. 2, 365-403. MR 0444795 (56 #3142)
  • [Col08] Michael J. Collins, Modular analogues of Jordan's theorem for finite linear groups, J. Reine Angew. Math. 624 (2008), 143-171. MR 2456628 (2009j:20071), https://doi.org/10.1515/CRELLE.2008.084
  • [CCN+85] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Maximal subgroups and ordinary characters for simple groups; with computational assistance from J. G. Thackray, Oxford University Press, Eynsham, 1985. MR 827219 (88g:20025)
  • [Dem97] Peter Dembowski, Finite geometries, Classics in Mathematics, Springer-Verlag, Berlin, 1997. Reprint of the 1968 original. MR 1434062 (97i:51005)
  • [Dic58] Leonard Eugene Dickson, Linear groups: With an exposition of the Galois field theory, with an introduction by W. Magnus, Dover Publications, Inc., New York, 1958. MR 0104735 (21 #3488)
  • [Gil06] Nick Gill, Nilpotent Singer groups, Electron. J. Combin. 13 (2006), no. 1, Research Paper 94, 6 pp. (electronic). MR 2274309 (2007i:20002)
  • [Gil07] Nick Gill, Transitive projective planes, Adv. Geom. 7 (2007), no. 4, 475-528. MR 2360899 (2009b:51001), https://doi.org/10.1515/ADVGEOM.2007.030
  • [Gla66] George Glauberman, Central elements in core-free groups, J. Algebra 4 (1966), 403-420. MR 0202822 (34 #2681)
  • [GLS94] Daniel Gorenstein, Richard Lyons, and Ronald Solomon, The classification of the finite simple groups, Mathematical Surveys and Monographs, vol. 40, American Mathematical Society, Providence, RI, 1994. MR 1303592 (95m:20014)
  • [Gor68] Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903 (38 #229)
  • [Gor94] Daniel M. Gordon, The prime power conjecture is true for $ n<2,000,000$, Electron. J. Combin. 1 (1994), Research Paper 6, approx. 7 pp. (electronic). MR 1293396 (95f:05018)
  • [Isa08] I. Martin Isaacs, Finite group theory, Graduate Studies in Mathematics, vol. 92, American Mathematical Society, Providence, RI, 2008. MR 2426855 (2009e:20029)
  • [Kan87] William M. Kantor, Primitive permutation groups of odd degree, and an application to finite projective planes, J. Algebra 106 (1987), no. 1, 15-45. MR 878466 (88b:20007), https://doi.org/10.1016/0021-8693(87)90019-6
  • [KL90] Peter Kleidman and Martin Liebeck, The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, vol. 129, Cambridge University Press, Cambridge, 1990. MR 1057341 (91g:20001)
  • [Lie85] Martin W. Liebeck, On the orders of maximal subgroups of the finite classical groups, Proc. London Math. Soc. (3) 50 (1985), no. 3, 426-446. MR 779398 (87a:20046), https://doi.org/10.1112/plms/s3-50.3.426
  • [Mar05] Attila Maróti, Bounding the number of conjugacy classes of a permutation group, J. Group Theory 8 (2005), no. 3, 273-289. MR 2137971 (2006e:20054), https://doi.org/10.1515/jgth.2005.8.3.273
  • [OW59] T. G. Ostrom and A. Wagner, On projective and affine planes with transitive collineation groups, Math. Z 71 (1959), 186-199. MR 0110975 (22 #1843)
  • [Pal82] P. P. Pálfy, A polynomial bound for the orders of primitive solvable groups, J. Algebra 77 (1982), no. 1, 127-137. MR 665168 (84c:20007), https://doi.org/10.1016/0021-8693(82)90281-2
  • [Pas68] Donald Passman, Permutation groups, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0237627 (38 #5908)
  • [PS80] Cheryl E. Praeger and Jan Saxl, On the orders of primitive permutation groups, Bull. London Math. Soc. 12 (1980), no. 4, 303-307. MR 576980 (81g:20003), https://doi.org/10.1112/blms/12.4.303
  • [Tha03] Koen Thas, Finite flag-transitive projective planes: a survey and some remarks, The 18th British Combinatorial Conference (Brighton, 2001), Discrete Math. 266 (2003), no. 1-3, 417-429. MR 1991732 (2004f:51015), https://doi.org/10.1016/S0012-365X(02)00823-3
  • [TZ08] Koen Thas and Don Zagier, Finite projective planes, Fermat curves, and Gaussian periods, J. Eur. Math. Soc. (JEMS) 10 (2008), no. 1, 173-190. MR 2349900 (2008h:05021), https://doi.org/10.4171/JEMS/107
  • [Wag59] A. Wagner, On perspectivities of finite projective planes, Math. Z 71 (1959), 113-123. MR 0110974 (22 #1842)
  • [WG64] John H. Walter and D. Gorenstein, The characterisation of finite groups with dihedral Sylow $ 2$-subgroups I, II, III, J. Algebra 2 (1965), 85-151, 218-270, 354-393. MR 0177032 (31 #1297a), MR 0177033 (31 #1297b), MR 0190220 (32 #7634)
  • [Zas36] Hans Zassenhaus, Über endliche Fastkörper, Abh. Math. Sem. Univ. Hamburg 11 (1935), no. 1, 187-220 (German). MR 3069653, https://doi.org/10.1007/BF02940723

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 20B25, 51A35

Retrieve articles in all journals with MSC (2010): 20B25, 51A35


Additional Information

Nick Gill
Affiliation: Department of Mathematics, The Open University, Walton Hall, Milton Keynes, MK7 6AA, United Kingdom
Address at time of publication: Department of Mathematics, University of South Wales, Treforest, CF37 1DL, United Kingdom
Email: nick.gill@southwales.ac.uk

DOI: https://doi.org/10.1090/tran/6366
Received by editor(s): January 28, 2013
Received by editor(s) in revised form: December 20, 2013, and December 21, 2013
Published electronically: January 6, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society