Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Endpoint bounds for the bilinear Hilbert transform


Authors: Francesco Di Plinio and Christoph Thiele
Journal: Trans. Amer. Math. Soc. 368 (2016), 3931-3972
MSC (2010): Primary 42B20
DOI: https://doi.org/10.1090/tran/6548
Published electronically: November 20, 2015
MathSciNet review: 3453362
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the behavior of the bilinear Hilbert transform $ (\mathrm {BHT})$ at the boundary of the known boundedness region $ \mathcal H$. A sample of our results is the estimate

$\displaystyle \vert\langle \mathrm {BHT}(f_1,f_2),f_3 \rangle \vert \leq \texts... ...extstyle \frac {\vert F_3\vert}{\min \{\vert F_1\vert,\vert F_2\vert\}} \Big ),$    

valid for all tuples of sets $ F_j\subset \mathbb{R}$ of finite measure and functions $ f_j$ such that $ \vert f_j\vert \leq \boldsymbol {1}_{F_j}$, $ j=1,2,3$, with the additional restriction that $ f_3$ be supported on a major subset $ F_3'$ of $ F_3$ that depends on $ \{F_j:j=1,2,3\}$. The use of subindicator functions in this fashion is standard in the given context. The double logarithmic term improves over the single logarithmic term obtained by D. Bilyk and L. Grafakos. Whether the double logarithmic term can be removed entirely, as is the case for the quartile operator, remains open.

We employ our endpoint results to describe the blow-up rate of weak-type and strong-type estimates for $ \mathrm {BHT}$ as the tuple $ \vec \alpha $ approaches the boundary of $ \mathcal H$. We also discuss bounds on Lorentz-Orlicz spaces near $ L^{\frac 23}$, improving on results of M. Carro et al. The main technical novelty in our article is an enhanced version of the multi-frequency Calderón-Zygmund decomposition.


References [Enhancements On Off] (What's this?)

  • [1] Dmitriy Bilyk and Loukas Grafakos, Distributional estimates for the bilinear Hilbert transform, J. Geom. Anal. 16 (2006), no. 4, 563-584. MR 2271944 (2007j:46033b), https://doi.org/10.1007/BF02922131
  • [2] Dmitriy Bilyk and Loukas Grafakos, A new way of looking at distributional estimates; applications for the bilinear Hilbert transform, Collect. Math. Vol. Extra (2006), 141-169. MR 2264208 (2007j:46033a)
  • [3] Peter Borwein and Tamás Erdélyi, Nikolskii-type inequalities for shift invariant function spaces, Proc. Amer. Math. Soc. 134 (2006), no. 11, 3243-3246. MR 2231907 (2007e:41014), https://doi.org/10.1090/S0002-9939-06-08533-9
  • [4] María Carro, Leonardo Colzani, and Gord Sinnamon, From restricted type to strong type estimates on quasi-Banach rearrangement invariant spaces, Studia Math. 182 (2007), no. 1, 1-27. MR 2326489 (2008f:46033), https://doi.org/10.4064/sm182-1-1
  • [5] María Jesús Carro, Loukas Grafakos, José María Martell, and Fernando Soria, Multilinear extrapolation and applications to the bilinear Hilbert transform, J. Math. Anal. Appl. 357 (2009), no. 2, 479-497. MR 2557660 (2010k:44008), https://doi.org/10.1016/j.jmaa.2009.04.021
  • [6] R. R. Coifman and Yves Meyer, On commutators of singular integrals and bilinear singular integrals, Trans. Amer. Math. Soc. 212 (1975), 315-331. MR 0380244 (52 #1144)
  • [7] Ciprian Demeter and Francesco Di Plinio, Endpoint bounds for the quartile operator, J. Fourier Anal. Appl. 19 (2013), no. 4, 836-856. MR 3089425, https://doi.org/10.1007/s00041-013-9275-4
  • [8] Francesco Di Plinio, Lacunary Fourier and Walsh-Fourier series near $ L^1$, Collect. Math. 65 (2014), no. 2, 219-232. MR 3189278, https://doi.org/10.1007/s13348-013-0094-3
  • [9] Francesco Di Plinio, Weak-$ L^p$ bounds for the Carleson and Walsh-Carleson operators, C. R. Math. Acad. Sci. Paris 352 (2014), no. 4, 327-331 (English, with English and French summaries). MR 3186922, https://doi.org/10.1016/j.crma.2014.02.005
  • [10] Yen Q. Do and Michael T. Lacey, On the convergence of lacunacy Walsh-Fourier series, Bull. Lond. Math. Soc. 44 (2012), no. 2, 241-254. MR 2914604, https://doi.org/10.1112/blms/bdr088
  • [11] Yen Do and Christoph Thiele, $ L^p$ theory for outer measures and two themes of Lennart Carleson united, Bull. Amer. Math. Soc. (N.S.) 52 (2015), no. 2, 249-296. MR 3312633, https://doi.org/10.1090/S0273-0979-2014-01474-0
  • [12] Loukas Grafakos and Xiaochun Li, Uniform bounds for the bilinear Hilbert transforms. I, Ann. of Math. (2) 159 (2004), no. 3, 889-933. MR 2113017 (2006e:42011), https://doi.org/10.4007/annals.2004.159.889
  • [13] Loukas Grafakos and Rodolfo H. Torres, Multilinear Calderón-Zygmund theory, Adv. Math. 165 (2002), no. 1, 124-164. MR 1880324 (2002j:42029), https://doi.org/10.1006/aima.2001.2028
  • [14] Lars Hörmander, The analysis of linear partial differential operators. I, Distribution theory and Fourier analysis, Classics in Mathematics, Springer-Verlag, Berlin, 2003. Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)]. MR 1996773
  • [15] A. E. Ingham, A Note on Fourier Transforms, J. London Math. Soc. S1-9, no. 1, 29. MR 1574706
  • [16] Carlos E. Kenig and Elias M. Stein, Multilinear estimates and fractional integration, Math. Res. Lett. 6 (1999), no. 1, 1-15. MR 1682725 (2000k:42023a), https://doi.org/10.4310/MRL.1999.v6.n1.a1
  • [17] Michael Lacey and Christoph Thiele, $ L^p$ estimates on the bilinear Hilbert transform for $ 2<p<\infty $, Ann. of Math. (2) 146 (1997), no. 3, 693-724. MR 1491450 (99b:42014), https://doi.org/10.2307/2952458
  • [18] Michael Lacey and Christoph Thiele, On Calderón's conjecture, Ann. of Math. (2) 149 (1999), no. 2, 475-496. MR 1689336 (2000d:42003), https://doi.org/10.2307/120971
  • [19] Michael T. Lacey, The bilinear maximal functions map into $ L^p$ for $ 2/3<p\leq 1$, Ann. of Math. (2) 151 (2000), no. 1, 35-57. MR 1745019 (2001b:42015), https://doi.org/10.2307/121111
  • [20] Xiaochun Li, Uniform bounds for the bilinear Hilbert transforms. II, Rev. Mat. Iberoam. 22 (2006), no. 3, 1069-1126. MR 2320411 (2008c:42014), https://doi.org/10.4171/RMI/483
  • [21] Yi Yu Liang, Li Guang Liu, and Da Chun Yang, An off-diagonal Marcinkiewicz interpolation theorem on Lorentz spaces, Acta Math. Sin. (Engl. Ser.) 27 (2011), no. 8, 1477-1488. MR 2822822 (2012f:46055), https://doi.org/10.1007/s10114-011-0287-1
  • [22] Victor Lie, On the pointwise convergence of the sequence of partial Fourier sums along lacunary subsequences, J. Funct. Anal. 263 (2012), no. 11, 3391-3411. MR 2984070, https://doi.org/10.1016/j.jfa.2012.08.013
  • [23] Victor Lie, On the boundedness of the Carleson operator near $ L^1$, Rev. Mat. Iberoam. 29 (2013), no. 4, 1239-1262. MR 3148602, https://doi.org/10.4171/RMI/755
  • [24] Camil Muscalu, Jill Pipher, Terence Tao, and Christoph Thiele, Multi-parameter paraproducts, Rev. Mat. Iberoam. 22 (2006), no. 3, 963-976. MR 2320408 (2008b:42037), https://doi.org/10.4171/RMI/480
  • [25] Camil Muscalu, Terence Tao, and Christoph Thiele, Multi-linear operators given by singular multipliers, J. Amer. Math. Soc. 15 (2002), no. 2, 469-496. MR 1887641 (2003b:42017), https://doi.org/10.1090/S0894-0347-01-00379-4
  • [26] Fedor Nazarov, Richard Oberlin, and Christoph Thiele, A Calderón-Zygmund decomposition for multiple frequencies and an application to an extension of a lemma of Bourgain, Math. Res. Lett. 17 (2010), no. 3, 529-545. MR 2653686 (2011d:42047), https://doi.org/10.4310/MRL.2010.v17.n3.a11
  • [27] Richard Oberlin and Christoph Thiele, New uniform bounds for a Walsh model of the bilinear Hilbert transform, Indiana Univ. Math. J. 60 (2011), no. 5, 1693-1712. MR 2997005, https://doi.org/10.1512/iumj.2011.60.4445
  • [28] Christoph Thiele, A uniform estimate, Ann. of Math. (2) 156 (2002), no. 2, 519-563. MR 1933076 (2003i:47036), https://doi.org/10.2307/3597197
  • [29] Christoph Thiele, Wave packet analysis, CBMS Regional Conference Series in Mathematics, vol. 105, published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006. MR 2199086 (2006m:42073)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 42B20

Retrieve articles in all journals with MSC (2010): 42B20


Additional Information

Francesco Di Plinio
Affiliation: Department of Mathematics, Brown University, Box 1917, Providence, Rhode Island 02912
Email: fradipli@math.brown.edu

Christoph Thiele
Affiliation: Hausdorff Institute for Mathematics, Universität Bonn, Endenicher Allee 60, D-53115 Bonn, Germany — and — Department of Mathematics, University of California Los Angeles, Los Angeles, California 90095-1555
Email: thiele@math.uni-bonn.de

DOI: https://doi.org/10.1090/tran/6548
Keywords: Bilinear Hilbert transform, multi-frequency Calder\'on-Zygmund decomposition, endpoint bounds
Received by editor(s): March 24, 2014
Published electronically: November 20, 2015
Additional Notes: The first author was partially supported by the National Science Foundation under the grant NSF-DMS-1206438
The second author was partially supported by the grant NSF-DMS-1001535
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society