Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Renormalization and blow-up for wave maps from $ S^2\times\mathbb{R}$ to $ S^2$


Author: Sohrab Shahshahani
Journal: Trans. Amer. Math. Soc. 368 (2016), 5621-5654
MSC (2010): Primary 74J30, 35A01, 35B44, 35C08
DOI: https://doi.org/10.1090/tran/6524
Published electronically: September 15, 2015
MathSciNet review: 3458393
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a one parameter family of finite time blow-ups to the co-rotational wave maps problem from $ S^2\times \mathbb{R}$ to $ S^2,$ parameterized by $ \nu \in (\frac {1}{2},1].$ The longitudinal function $ u(t,\alpha )$ which is the main object of study will be obtained as a perturbation of a rescaled harmonic map of rotation index one from $ \mathbb{R}^2$ to $ S^2.$ The domain of this harmonic map is identified with a neighborhood of the north pole in the domain $ S^2$ via the exponential coordinates $ (\alpha ,\theta ).$ In these coordinates $ u(t,\alpha )=Q(\lambda (t)\alpha )+\mathcal {R}(t,\alpha ),$ where $ Q(r)=2\arctan {r}$ is the standard co-rotational harmonic map to the sphere, $ \lambda (t)=t^{-1-\nu },$ and $ \mathcal {R}(t,\alpha )$ is the error with local energy going to zero as $ t\rightarrow 0.$ Blow-up will occur at $ (t,\alpha )=(0,0)$ due to energy concentration, and up to this point the solution will have regularity $ H^{1+\nu -}.$


References [Enhancements On Off] (What's this?)

  • [1] Cătălin I. Cârstea, A construction of blow up solutions for co-rotational wave maps, Comm. Math. Phys. 300 (2010), no. 2, 487-528. MR 2728732 (2011m:35227), https://doi.org/10.1007/s00220-010-1118-4
  • [2] Raphaël Côte, Instability of nonconstant harmonic maps for the $ (1+2)$-dimensional equivariant wave map system, Int. Math. Res. Not. 57 (2005), 3525-3549. MR 2199855 (2006k:58023), https://doi.org/10.1155/IMRN.2005.3525
  • [3] Raphaël Côte, Carlos E. Kenig, and Frank Merle, Scattering below critical energy for the radial 4D Yang-Mills equation and for the 2D corotational wave map system, Comm. Math. Phys. 284 (2008), no. 1, 203-225. MR 2443303 (2010k:35312), https://doi.org/10.1007/s00220-008-0604-4
  • [4] Thierry Cazenave, Jalal Shatah, and A. Shadi Tahvildar-Zadeh, Harmonic maps of the hyperbolic space and development of singularities in wave maps and Yang-Mills fields, Ann. Inst. H. Poincaré Phys. Théor. 68 (1998), no. 3, 315-349 (English, with English and French summaries). MR 1622539 (2000g:58042)
  • [5] Roland Donninger and Joachim Krieger, Nonscattering solutions and blowup at infinity for the critical wave equation, Math. Ann. 357 (2013), no. 1, 89-163. MR 3084344, https://doi.org/10.1007/s00208-013-0898-1
  • [6] Fritz Gesztesy and Maxim Zinchenko, On spectral theory for Schrödinger operators with strongly singular potentials, Math. Nachr. 279 (2006), no. 9-10, 1041-1082. MR 2242965 (2007h:47076), https://doi.org/10.1002/mana.200510410
  • [7] Sergiu Klainerman and Igor Rodnianski, On the global regularity of wave maps in the critical Sobolev norm, Internat. Math. Res. Notices 13 (2001), 655-677. MR 1843256 (2002h:58051), https://doi.org/10.1155/S1073792801000344
  • [8] Sergiu Klainerman and Matei Machedon, On the optimal local regularity for gauge field theories, Differential Integral Equations 10 (1997), no. 6, 1019-1030. MR 1608017 (2000d:58043)
  • [9] Sergiu Klainerman and Sigmund Selberg, Remark on the optimal regularity for equations of wave maps type, Comm. Partial Differential Equations 22 (1997), no. 5-6, 901-918. MR 1452172 (99c:35163), https://doi.org/10.1080/03605309708821288
  • [10] Sergiu Klainerman and Sigmund Selberg, Bilinear estimates and applications to nonlinear wave equations, Commun. Contemp. Math. 4 (2002), no. 2, 223-295. MR 1901147 (2003d:35182), https://doi.org/10.1142/S0219199702000634
  • [11] Joachim Krieger, Global regularity of wave maps from $ {\bf R}^{3+1}$ to surfaces, Comm. Math. Phys. 238 (2003), no. 1-2, 333-366. MR 1990880 (2004e:58050), https://doi.org/10.1007/s00220-003-0836-2
  • [12] Joachim Krieger, Global regularity of wave maps from $ \mathbf {R}^{2+1}$ to $ H^2$. Small energy, Comm. Math. Phys. 250 (2004), no. 3, 507-580. MR 2094472 (2005f:58049), https://doi.org/10.1007/s00220-004-1088-5
  • [13] Joachim Krieger and Wilhelm Schlag, Concentration compactness for critical wave maps, EMS Monographs in Mathematics, European Mathematical Society (EMS), Zürich, 2012. MR 2895939
  • [14] J. Krieger, W. Schlag, and D. Tataru, Renormalization and blow up for charge one equivariant critical wave maps, Invent. Math. 171 (2008), no. 3, 543-615. MR 2372807 (2009b:58061), https://doi.org/10.1007/s00222-007-0089-3
  • [15] Joachim Krieger, Wilhelm Schlag, and Daniel Tataru, Slow blow-up solutions for the $ H^1(\mathbb{R}^3)$ critical focusing semilinear wave equation, Duke Math. J. 147 (2009), no. 1, 1-53. MR 2494455 (2010h:58045), https://doi.org/10.1215/00127094-2009-005
  • [16] J. Krieger, W. Schlag, and D. Tataru, Renormalization and blow up for the critical Yang-Mills problem, Adv. Math. 221 (2009), no. 5, 1445-1521. MR 2522426 (2010h:58023), https://doi.org/10.1016/j.aim.2009.02.017
  • [17] Frank Merle and Pierre Raphael, The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. of Math. (2) 161 (2005), no. 1, 157-222. MR 2150386 (2006k:35277), https://doi.org/10.4007/annals.2005.161.157
  • [18] F. Merle and P. Raphael, Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation, Geom. Funct. Anal. 13 (2003), no. 3, 591-642. MR 1995801 (2005j:35207), https://doi.org/10.1007/s00039-003-0424-9
  • [19] Frank Merle and Pierre Raphael, On universality of blow-up profile for $ L^2$ critical nonlinear Schrödinger equation, Invent. Math. 156 (2004), no. 3, 565-672. MR 2061329 (2006a:35283), https://doi.org/10.1007/s00222-003-0346-z
  • [20] Frank Merle and Pierre Raphael, On a sharp lower bound on the blow-up rate for the $ L^2$ critical nonlinear Schrödinger equation, J. Amer. Math. Soc. 19 (2006), no. 1, 37-90 (electronic). MR 2169042 (2006j:35223), https://doi.org/10.1090/S0894-0347-05-00499-6
  • [21] Frank Merle and Pierre Raphael, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Comm. Math. Phys. 253 (2005), no. 3, 675-704. MR 2116733 (2006m:35346), https://doi.org/10.1007/s00220-004-1198-0
  • [22] Frank Merle, Pierre Raphaël, and Igor Rodnianski, Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map, C. R. Math. Acad. Sci. Paris 349 (2011), no. 5-6, 279-283 (English, with English and French summaries). MR 2783320 (2012e:58029), https://doi.org/10.1016/j.crma.2011.01.026
  • [23] Frank Merle, Pierre Raphaël, and Igor Rodnianski, Blow up dynamics for smooth equivariant solutions to the energy critical Schrödinger map, C. R. Math. Acad. Sci. Paris 349 (2011), no. 5-6, 279-283 (English, with English and French summaries). MR 2783320 (2012e:58029), https://doi.org/10.1016/j.crma.2011.01.026
  • [24] Galina Perelman, On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré 2 (2001), no. 4, 605-673. MR 1852922 (2002m:35205), https://doi.org/10.1007/PL00001048
  • [25] Pierre Raphael, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation, Math. Ann. 331 (2005), no. 3, 577-609. MR 2122541 (2006b:35303), https://doi.org/10.1007/s00208-004-0596-0
  • [26] Pierre Raphaël and Igor Rodnianski, Stable blow up dynamics for the critical co-rotational wave maps and equivariant Yang-Mills problems, Publ. Math. Inst. Hautes Études Sci. , posted on (2012), 1-122. MR 2929728, https://doi.org/10.1007/s10240-011-0037-z
  • [27] Igor Rodnianski and Jacob Sterbenz, On the formation of singularities in the critical $ {\rm O}(3)$ $ \sigma $-model, Ann. of Math. (2) 172 (2010), no. 1, 187-242. MR 2680419 (2011i:58023), https://doi.org/10.4007/annals.2010.172.187
  • [28] Jalal Shatah, Weak solutions and development of singularities of the $ {\rm SU}(2)$ $ \sigma $-model, Comm. Pure Appl. Math. 41 (1988), no. 4, 459-469. MR 933231 (89f:58044), https://doi.org/10.1002/cpa.3160410405
  • [29] Jalal Shatah and A. Shadi Tahvildar-Zadeh, On the stability of stationary wave maps, Comm. Math. Phys. 185 (1997), no. 1, 231-256. MR 1463041 (98d:58182), https://doi.org/10.1007/s002200050089
  • [30] Jacob Sterbenz and Daniel Tataru, Regularity of wave-maps in dimension $ 2+1$, Comm. Math. Phys. 298 (2010), no. 1, 231-264. MR 2657818 (2011h:58026), https://doi.org/10.1007/s00220-010-1062-3
  • [31] Jacob Sterbenz and Daniel Tataru, Energy dispersed large data wave maps in $ 2+1$ dimensions, Comm. Math. Phys. 298 (2010), no. 1, 139-230. MR 2657817 (2011g:58045), https://doi.org/10.1007/s00220-010-1061-4
  • [32] Michael Struwe, Equivariant wave maps in two space dimensions, dedicated to the memory of Jürgen K. Moser, Comm. Pure Appl. Math. 56 (2003), no. 7, 815-823. MR 1990477 (2004c:58061), https://doi.org/10.1002/cpa.10074
  • [33] Terence Tao, Global regularity of wave maps. I. Small critical Sobolev norm in high dimension, Internat. Math. Res. Notices 6 (2001), 299-328. MR 1820329 (2001m:35200), https://doi.org/10.1155/S1073792801000150
  • [34] Terence Tao, Global regularity of wave maps. II. Small energy in two dimensions, Comm. Math. Phys. 224 (2001), no. 2, 443-544. MR 1869874 (2002h:58052), https://doi.org/10.1007/PL00005588
  • [35] T. Tao, Global regularity of wave maps III. Large energy from $ R^{1+2}$ to hyperbolic spaces, preprint, 2008.
  • [36] Daniel Tataru, Local and global results for wave maps. I, Comm. Partial Differential Equations 23 (1998), no. 9-10, 1781-1793. MR 1641721 (99j:58209), https://doi.org/10.1080/03605309808821400
  • [37] Daniel Tataru, On global existence and scattering for the wave maps equation, Amer. J. Math. 123 (2001), no. 1, 37-77. MR 1827277 (2002c:58045)
  • [38] Daniel Tataru, Rough solutions for the wave maps equation, Amer. J. Math. 127 (2005), no. 2, 293-377. MR 2130618 (2006a:58034)
  • [39] Daniel Tataru, The wave maps equation, Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 2, 185-204 (electronic). MR 2043751 (2005h:35245), https://doi.org/10.1090/S0273-0979-04-01005-5
  • [40] Michael E. Taylor, Partial differential equations, Basic theory, Texts in Applied Mathematics, vol. 23, Springer-Verlag, New York, 1996. MR 1395147 (98b:35002a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 74J30, 35A01, 35B44, 35C08

Retrieve articles in all journals with MSC (2010): 74J30, 35A01, 35B44, 35C08


Additional Information

Sohrab Shahshahani
Affiliation: Section de Mathématiques, EPFL FSB SMA, Station 8 - Bâtiment MA, CH-1015 Lausanne, Switzerland
Address at time of publication: Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, Michigan 48109
Email: shahshah@umich.edu

DOI: https://doi.org/10.1090/tran/6524
Received by editor(s): May 25, 2014
Received by editor(s) in revised form: July 15, 2014
Published electronically: September 15, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society