Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On a transport equation with nonlocal drift


Authors: Luis Silvestre and Vlad Vicol
Journal: Trans. Amer. Math. Soc. 368 (2016), 6159-6188
MSC (2010): Primary 35Q35
DOI: https://doi.org/10.1090/tran6651
Published electronically: November 6, 2015
MathSciNet review: 3461030
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In 2005, Córdoba, Córdoba, and Fontelos proved that for some initial data, the following nonlocal-drift variant of the 1D Burgers equation does not have global classical solutions

$\displaystyle \partial _t \theta +u \; \partial _x \theta = 0, \qquad u = H \theta , $

where $ H$ is the Hilbert transform. We provide four essentially different proofs of this fact. Moreover, we study possible Hölder regularization effects of this equation and its consequences to the equation with diffusion

$\displaystyle \partial _t \theta + u \; \partial _x \theta + \Lambda ^\gamma \theta = 0, \qquad u = H \theta , $

where $ \Lambda = (-\Delta )^{1/2}$, and $ 1/2 \leq \gamma <1$. Our results also apply to the model with velocity field $ u = \Lambda ^s H \theta $, where $ s \in (-1,1)$. We conjecture that solutions which arise as limits from vanishing viscosity approximations are bounded in the Hölder class in $ C^{(s+1)/2}$, for all positive time.

References [Enhancements On Off] (What's this?)

  • [1] Nathaël Alibaud, Jérôme Droniou, and Julien Vovelle, Occurrence and non-appearance of shocks in fractal Burgers equations, J. Hyperbolic Differ. Equ. 4 (2007), no. 3, 479-499. MR 2339805 (2008i:35198), https://doi.org/10.1142/S0219891607001227
  • [2] Gregory R. Baker, Xiao Li, and Anne C. Morlet, Analytic structure of two $ 1$D-transport equations with nonlocal fluxes, Phys. D 91 (1996), no. 4, 349-375. MR 1382265 (97a:76019), https://doi.org/10.1016/0167-2789(95)00271-5
  • [3] Luis A. Caffarelli and Alexis Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math. (2) 171 (2010), no. 3, 1903-1930. MR 2680400 (2011m:35281), https://doi.org/10.4007/annals.2010.171.1903
  • [4] Pierre Cardaliaguet and Luis Silvestre, Hölder continuity to Hamilton-Jacobi equations with superquadratic growth in the gradient and unbounded right-hand side, Comm. Partial Differential Equations 37 (2012), no. 9, 1668-1688. MR 2969493, https://doi.org/10.1080/03605302.2012.660267
  • [5] A. Castro and D. Córdoba, Global existence, singularities and ill-posedness for a nonlocal flux, Adv. Math. 219 (2008), no. 6, 1916-1936. MR 2456270 (2009h:35046), https://doi.org/10.1016/j.aim.2008.07.015
  • [6] Angel Castro and Diego Córdoba, Self-similar solutions for a transport equation with non-local flux, Chin. Ann. Math. Ser. B 30 (2009), no. 5, 505-512. MR 2601483 (2011a:35065), https://doi.org/10.1007/s11401-009-0180-8
  • [7] Dongho Chae, Antonio Córdoba, Diego Córdoba, and Marco A. Fontelos, Finite time singularities in a 1D model of the quasi-geostrophic equation, Adv. Math. 194 (2005), no. 1, 203-223. MR 2141858 (2006a:76116), https://doi.org/10.1016/j.aim.2004.06.004
  • [8] Chi Hin Chan, Magdalena Czubak, and Luis Silvestre, Eventual regularization of the slightly supercritical fractional Burgers equation, Discrete Contin. Dyn. Syst. 27 (2010), no. 2, 847-861. MR 2600693 (2011a:35551), https://doi.org/10.3934/dcds.2010.27.847
  • [9] A. Cheskidov and K. Zaya, Regularizing effect of the forward energy cascade in the inviscid dyadic model, arXiv: 1310.7612, 10 2013.
  • [10] K. Choi, T. Y. Hou, A. Kiselev, G. Luo, V. Sverak, and Y. Yao, On the finite-time blowup of a 1D model for the 3D axisymmetric Euler equations, arXiv:1407.4776, 2014.
  • [11] Kyudong Choi, Alexander Kiselev, and Yao Yao, Finite time blow up for a 1D model of 2D Boussinesq system, Comm. Math. Phys. 334 (2015), no. 3, 1667-1679. MR 3312447, https://doi.org/10.1007/s00220-014-2146-2
  • [12] P. Constantin, P. D. Lax, and A. Majda, A simple one-dimensional model for the three-dimensional vorticity equation, Comm. Pure Appl. Math. 38 (1985), no. 6, 715-724. MR 812343 (87a:76037), https://doi.org/10.1002/cpa.3160380605
  • [13] Peter Constantin, Andrew J. Majda, and Esteban Tabak, Formation of strong fronts in the $ 2$-D quasigeostrophic thermal active scalar, Nonlinearity 7 (1994), no. 6, 1495-1533. MR 1304437 (95i:76107)
  • [14] Peter Constantin, Andrei Tarfulea, and Vlad Vicol, Long Time Dynamics of Forced Critical SQG, Comm. Math. Phys. 335 (2015), no. 1, 93-141. MR 3314501, https://doi.org/10.1007/s00220-014-2129-3
  • [15] Peter Constantin and Vlad Vicol, Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal. 22 (2012), no. 5, 1289-1321. MR 2989434, https://doi.org/10.1007/s00039-012-0172-9
  • [16] Antonio Córdoba, Diego Córdoba, and Marco A. Fontelos, Formation of singularities for a transport equation with nonlocal velocity, Ann. of Math. (2) 162 (2005), no. 3, 1377-1389. MR 2179734 (2007b:35011), https://doi.org/10.4007/annals.2005.162.1377
  • [17] Antonio Córdoba, Diego Córdoba, and Marco A. Fontelos, Integral inequalities for the Hilbert transform applied to a nonlocal transport equation, J. Math. Pures Appl. (9) 86 (2006), no. 6, 529-540 (English, with English and French summaries). MR 2281451 (2007k:35040), https://doi.org/10.1016/j.matpur.2006.08.002
  • [18] Michael Dabkowski, Eventual regularity of the solutions to the supercritical dissipative quasi-geostrophic equation, Geom. Funct. Anal. 21 (2011), no. 1, 1-13. MR 2773101 (2012e:35190), https://doi.org/10.1007/s00039-011-0108-9
  • [19] Michael Dabkowski, Alexander Kiselev, Luis Silvestre, and Vlad Vicol, Global well-posedness of slightly supercritical active scalar equations, Anal. PDE 7 (2014), no. 1, 43-72. MR 3219499, https://doi.org/10.2140/apde.2014.7.43
  • [20] Salvatore De Gregorio, On a one-dimensional model for the three-dimensional vorticity equation, J. Statist. Phys. 59 (1990), no. 5-6, 1251-1263. MR 1063199 (91m:76022), https://doi.org/10.1007/BF01334750
  • [21] Salvatore De Gregorio, A partial differential equation arising in a $ 1$D model for the $ 3$D vorticity equation, Math. Methods Appl. Sci. 19 (1996), no. 15, 1233-1255. MR 1410208 (97i:76031), https://doi.org/10.1002/(SICI)1099-1476(199610)19:15$ \langle $1233::AID-MMA828$ \rangle $3.3.CO;2-N
  • [22] Tam Do, On a 1D transport equation with nonlocal velocity and supercritical dissipation, J. Differential Equations 256 (2014), no. 9, 3166-3178. MR 3171771, https://doi.org/10.1016/j.jde.2014.01.037
  • [23] Hongjie Dong, Well-posedness for a transport equation with nonlocal velocity, J. Funct. Anal. 255 (2008), no. 11, 3070-3097. MR 2464570 (2010b:35056), https://doi.org/10.1016/j.jfa.2008.08.005
  • [24] Hongjie Dong, Dapeng Du, and Dong Li, Finite time singularities and global well-posedness for fractal Burgers equations, Indiana Univ. Math. J. 58 (2009), no. 2, 807-821. MR 2514389 (2010i:35320), https://doi.org/10.1512/iumj.2009.58.3505
  • [25] Hongjie Dong and Dong Li, On a one-dimensional $ \alpha $-patch model with nonlocal drift and fractional dissipation, Trans. Amer. Math. Soc. 366 (2014), no. 4, 2041-2061. MR 3152722, https://doi.org/10.1090/S0002-9947-2013-06075-8
  • [26] Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845 (99e:35001)
  • [27] Francisco Gancedo, Existence for the $ \alpha $-patch model and the QG sharp front in Sobolev spaces, Adv. Math. 217 (2008), no. 6, 2569-2598. MR 2397460 (2009b:35329), https://doi.org/10.1016/j.aim.2007.10.010
  • [28] A. Kiselev, Regularity and blow up for active scalars, Math. Model. Nat. Phenom. 5 (2010), no. 4, 225-255. MR 2662457 (2011e:35303), https://doi.org/10.1051/mmnp/20105410
  • [29] Alexander Kiselev, Nonlocal maximum principles for active scalars, Adv. Math. 227 (2011), no. 5, 1806-1826. MR 2803787 (2012k:35414), https://doi.org/10.1016/j.aim.2011.03.019
  • [30] Alexander Kiselev, Fedor Nazarov, and Roman Shterenberg, Blow up and regularity for fractal Burgers equation, Dyn. Partial Differ. Equ. 5 (2008), no. 3, 211-240. MR 2455893 (2009k:35264), https://doi.org/10.4310/DPDE.2008.v5.n3.a2
  • [31] A. Kiselev, F. Nazarov, and A. Volberg, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math. 167 (2007), no. 3, 445-453. MR 2276260 (2008f:35308), https://doi.org/10.1007/s00222-006-0020-3
  • [32] Dong Li and Jose Rodrigo, Blow-up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation, Adv. Math. 217 (2008), no. 6, 2563-2568. MR 2397459 (2009c:35029), https://doi.org/10.1016/j.aim.2007.11.002
  • [33] Dong Li and José L. Rodrigo, On a one-dimensional nonlocal flux with fractional dissipation, SIAM J. Math. Anal. 43 (2011), no. 1, 507-526. MR 2783214 (2012c:35352), https://doi.org/10.1137/100794924
  • [34] G. Luo and T. Y. Hou, Potentially singular solutions of the 3D incompressible Euler equations, arXiv:1310.0497, 2013.
  • [35] Anne C. Morlet, Further properties of a continuum of model equations with globally defined flux, J. Math. Anal. Appl. 221 (1998), no. 1, 132-160. MR 1619138 (99a:76049), https://doi.org/10.1006/jmaa.1997.5801
  • [36] Adam M. Oberman, Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton-Jacobi equations and free boundary problems, SIAM J. Numer. Anal. 44 (2006), no. 2, 879-895 (electronic). MR 2218974 (2007a:65173), https://doi.org/10.1137/S0036142903435235
  • [37] Hisashi Okamoto, Takashi Sakajo, and Marcus Wunsch, On a generalization of the Constantin-Lax-Majda equation, Nonlinearity 21 (2008), no. 10, 2447-2461. MR 2439488 (2009g:76009), https://doi.org/10.1088/0951-7715/21/10/013
  • [38] Takashi Sakajo, On global solutions for the Constantin-Lax-Majda equation with a generalized viscosity term, Nonlinearity 16 (2003), no. 4, 1319-1328. MR 1986297 (2004d:76029), https://doi.org/10.1088/0951-7715/16/4/307
  • [39] Gregory Seregin, Luis Silvestre, Vladimír Šverák, and Andrej Zlatoš, On divergence-free drifts, J. Differential Equations 252 (2012), no. 1, 505-540. MR 2852216 (2012k:35434), https://doi.org/10.1016/j.jde.2011.08.039
  • [40] Luis Silvestre, Eventual regularization for the slightly supercritical quasi-geostrophic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 2, 693-704 (English, with English and French summaries). MR 2595196 (2011c:35603), https://doi.org/10.1016/j.anihpc.2009.11.006
  • [41] Luis Silvestre, On the differentiability of the solution to an equation with drift and fractional diffusion, Indiana Univ. Math. J. 61 (2012), no. 2, 557-584. MR 3043588, https://doi.org/10.1512/iumj.2012.61.4568
  • [42] A. Vasseur and C. H. Chan,
    Personal communication,
    2014.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35Q35

Retrieve articles in all journals with MSC (2010): 35Q35


Additional Information

Luis Silvestre
Affiliation: Department of Mathematics, The University of Chicago, Chicago, Illinois 60637
Email: luis@math.uchicago.edu

Vlad Vicol
Affiliation: Department of Mathematics, Fine Hall, Princeton University, Washington Road, Princeton, New Jersey 08544
Email: vvicol@math.princeton.edu

DOI: https://doi.org/10.1090/tran6651
Received by editor(s): August 5, 2014
Published electronically: November 6, 2015
Article copyright: © Copyright 2015 American Mathematical Society

American Mathematical Society