Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Strongly essential flows on irreducible parabolic geometries


Authors: Karin Melnick and Katharina Neusser
Journal: Trans. Amer. Math. Soc. 368 (2016), 8079-8110
MSC (2010): Primary 53B15; Secondary 37C10
DOI: https://doi.org/10.1090/tran/6814
Published electronically: April 15, 2016
MathSciNet review: 3546794
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the local geometry of irreducible parabolic geometries admitting strongly essential flows; these are flows by local automorphisms with higher-order fixed points. We prove several new rigidity results and recover some old ones for projective and conformal structures, which show that in many cases the existence of a strongly essential flow implies local flatness of the geometry on an open set having the fixed point in its closure. For almost c-projective and almost quaternionic structures we can moreover show flatness of the geometry on a neighborhood of the fixed point.


References [Enhancements On Off] (What's this?)

  • [1] V. K. Belošapka, The dimension of the group of automorphisms of an analytic hypersurface, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 2, 243-266, 479 (Russian). MR 534592
  • [2] David M. J. Calderbank and Tammo Diemer, Differential invariants and curved Bernstein-Gelfand-Gelfand sequences, J. Reine Angew. Math. 537 (2001), 67-103. MR 1856258 (2002k:58048), https://doi.org/10.1515/crll.2001.059
  • [3] David M. J. Calderbank, Tammo Diemer, and Vladimír Souček, Ricci-corrected derivatives and invariant differential operators, Differential Geom. Appl. 23 (2005), no. 2, 149-175. MR 2158042 (2006j:53073), https://doi.org/10.1016/j.difgeo.2004.07.009
  • [4] D. M. J. Calderbank, M. G. Eastwood, V. S. Matveev, and K. Neusser, C-projective geometry, arxiv: 1512.04516.
  • [5] Andreas Čap and Karin Melnick, Essential Killing fields of parabolic geometries, Indiana Univ. Math. J. 62 (2013), no. 6, 1917-1953. MR 3205536, https://doi.org/10.1512/iumj.2013.62.5166
  • [6] Andreas Čap and Karin Melnick, Essential Killing fields of parabolic geometries: projective and conformal structures, Cent. Eur. J. Math. 11 (2013), no. 12, 2053-2061. MR 3111705, https://doi.org/10.2478/s11533-013-0317-6
  • [7] Andreas Čap and Hermann Schichl, Parabolic geometries and canonical Cartan connections, Hokkaido Math. J. 29 (2000), no. 3, 453-505. MR 1795487 (2002f:53036), https://doi.org/10.14492/hokmj/1350912986
  • [8] Andreas Čap and Jan Slovák, Parabolic geometries. I: Background and general theory, Mathematical Surveys and Monographs, vol. 154, American Mathematical Society, Providence, RI, 2009. MR 2532439 (2010j:53037)
  • [9] Stephen Casey, Maciej Dunajski, and Paul Tod, Twistor geometry of a pair of second order ODEs, Comm. Math. Phys. 321 (2013), no. 3, 681-701. MR 3070033, https://doi.org/10.1007/s00220-013-1729-7
  • [10] Charles Frances and Karin Melnick, Conformal actions of nilpotent groups on pseudo-Riemannian manifolds, Duke Math. J. 153 (2010), no. 3, 511-550. MR 2667424 (2011k:53093), https://doi.org/10.1215/00127094-2010-030
  • [11] Charles Frances and Karin Melnick, Formes normales pour les champs conformes pseudo-riemanniens, Bull. Soc. Math. France 141 (2013), no. 3, 377-421 (French, with English and French summaries). MR 3157055
  • [12] A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121-138 (French). MR 0087176 (19,315b)
  • [13] Bertram Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973-1032. MR 0114875 (22 #5693)
  • [14] Bertram Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329-387. MR 0142696
  • [15] B. Kruglikov and D. The, The gap phenomenon in parabolic geometries, J. Reine Angew. Math., DOI 10.1515/crelle-2014-0072.
  • [16] N. G. Kruzhilin, Local automorphisms and mappings of smooth strictly pseudoconvex hypersurfaces, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), no. 3, 566-591, 672 (Russian). MR 794956
  • [17] A. V. Loboda, Local automorphisms of real-analytic hypersurfaces, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), no. 3, 620-645 (Russian). MR 623353
  • [18] Vladimir S. Matveev and Stefan Rosemann, Proof of the Yano-Obata conjecture for h-projective transformations, J. Differential Geom. 92 (2012), no. 2, 221-261. MR 2998672
  • [19] Karin Melnick, A Frobenius theorem for Cartan geometries, with applications, Enseign. Math. (2) 57 (2011), no. 1-2, 57-89. MR 2850584 (2012m:53111), https://doi.org/10.4171/LEM/57-1-3
  • [20] K. Melnick and K. Neusser, Strongly essential flows on irreducible parabolic geometries, arxiv.org/abs/1410.4647 (version 1).
  • [21] Tohru Morimoto, Geometric structures on filtered manifolds, Hokkaido Math. J. 22 (1993), no. 3, 263-347. MR 1245130 (94m:58243), https://doi.org/10.14492/hokmj/1381413178
  • [22] Tadashi Nagano and Takushiro Ochiai, On compact Riemannian manifolds admitting essential projective transformations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986), no. 2, 233-246. MR 866391 (88e:53060)
  • [23] R. W. Sharpe, Differential geometry: Cartan's generalization of Klein's Erlangen program; With a foreword by S. S. Chern, Graduate Texts in Mathematics, vol. 166, Springer-Verlag, New York, 1997. MR 1453120 (98m:53033)
  • [24] Noboru Tanaka, On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J. 8 (1979), no. 1, 23-84. MR 533089 (80h:53034), https://doi.org/10.14492/hokmj/1381758416
  • [25] Gerald Teschl, Ordinary differential equations and dynamical systems, Graduate Studies in Mathematics, vol. 140, American Mathematical Society, Providence, RI, 2012. MR 2961944
  • [26] A. G. Vitushkin, Holomorphic extension of mappings of compact hypersurfaces, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 1, 28-35, 190 (Russian). MR 643891 (83h:32028)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53B15, 37C10

Retrieve articles in all journals with MSC (2010): 53B15, 37C10


Additional Information

Karin Melnick
Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742
Email: karin@math.umd.edu

Katharina Neusser
Affiliation: Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200, Australia
Address at time of publication: Mathematical Institute, Charles University, Sokolovská 83, Praha, Czech Republic
Email: Katharina.neusser@anu.edu.au, kath.neusser@gmail.com

DOI: https://doi.org/10.1090/tran/6814
Received by editor(s): January 13, 2015
Received by editor(s) in revised form: May 7, 2015
Published electronically: April 15, 2016
Additional Notes: The first author was partially supported during work on this project by a Centennial Fellowship from the American Mathematical Society and by NSF grants DMS-1007136 and 1255462
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society