Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Quasi-Frobenius-Lusztig kernels for simple Lie algebras


Authors: Gongxiang Liu, Fred Van Oystaeyen and Yinhuo Zhang
Journal: Trans. Amer. Math. Soc. 369 (2017), 2049-2086
MSC (2010): Primary 17B37; Secondary 16T05
DOI: https://doi.org/10.1090/tran/6731
Published electronically: August 22, 2016
MathSciNet review: 3581227
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the first author's Math. Res. Lett. paper (2014), the quasi-Frobenius-Lusztig kernel associated with $ \mathfrak{sl}_{2}$ was constructed. In this paper we construct the quasi-Frobenius-Lusztig kernels associated with any simple Lie algebra $ \mathfrak{g}$.


References [Enhancements On Off] (What's this?)

  • [1] Nicolás Andruskiewitsch and Hans-Jürgen Schneider, On the classification of finite-dimensional pointed Hopf algebras, Ann. of Math. (2) 171 (2010), no. 1, 375-417. MR 2630042 (2011j:16058), https://doi.org/10.4007/annals.2010.171.375
  • [2] Iván Ezequiel Angiono, Basic quasi-Hopf algebras over cyclic groups, Adv. Math. 225 (2010), no. 6, 3545-3575. MR 2729015 (2011i:16045), https://doi.org/10.1016/j.aim.2010.06.013
  • [3] Damien Calaque and Pavel Etingof, Lectures on tensor categories, Quantum groups, IRMA Lect. Math. Theor. Phys., vol. 12, Eur. Math. Soc., Zürich, 2008, pp. 1-38. MR 2432988 (2009g:18010), https://doi.org/10.4171/047-1/1
  • [4] Claude Cibils and Marc Rosso, Hopf quivers, J. Algebra 254 (2002), no. 2, 241-251. MR 1933868 (2003h:16016), https://doi.org/10.1016/S0021-8693(02)00080-7
  • [5] R. Dijkgraaf, V. Pasquier, and P. Roche, Quasi Hopf algebras, group cohomology and orbifold models, Nuclear Phys. B Proc. Suppl. 18B (1990), 60-72 (1991). Recent advances in field theory (Annecy-le-Vieux, 1990). MR 1128130 (92m:81238), https://doi.org/10.1016/0920-5632(91)90123-V
  • [6] V. G. Drinfeld, Quantum groups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 798-820. MR 934283 (89f:17017)
  • [7] V. G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR 283 (1985), no. 5, 1060-1064 (Russian). MR 802128 (87h:58080)
  • [8] V. G. Drinfeld, Quasi-Hopf algebras, Algebra i Analiz 1 (1989), no. 6, 114-148 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 6, 1419-1457. MR 1047964 (91b:17016)
  • [9] A. M. Gaĭnutdinov, A. M. Semikhatov, I. Yu. Tipunin, and B. L. Feĭgin, The Kazhdan-Lusztig correspondence for the representation category of the triplet $ W$-algebra in logorithmic conformal field theories, Teoret. Mat. Fiz. 148 (2006), no. 3, 398-427 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 148 (2006), no. 3, 1210-1235. MR 2283660 (2007k:17019), https://doi.org/10.1007/s11232-006-0113-6
  • [10] Shlomo Gelaki, Basic quasi-Hopf algebras of dimension $ n^3$, J. Pure Appl. Algebra 198 (2005), no. 1-3, 165-174. MR 2132880 (2005k:16082), https://doi.org/10.1016/j.jpaa.2004.10.003
  • [11] Pavel Etingof and Shlomo Gelaki, The small quantum group as a quantum double, J. Algebra 322 (2009), no. 7, 2580-2585. MR 2553696 (2010i:17022), https://doi.org/10.1016/j.jalgebra.2009.05.046
  • [12] Pavel Etingof and Shlomo Gelaki, On radically graded finite-dimensional quasi-Hopf algebras, Mosc. Math. J. 5 (2005), no. 2, 371-378, 494 (English, with English and Russian summaries). MR 2200756 (2006j:16053)
  • [13] Frank Hausser and Florian Nill, Doubles of quasi-quantum groups, Comm. Math. Phys. 199 (1999), no. 3, 547-589. MR 1669685 (2000a:16075), https://doi.org/10.1007/s002200050512
  • [14] HuaLin Huang, From projective representations to quasi-quantum groups, Sci. China Math. 55 (2012), no. 10, 2067-2080. MR 2972630, https://doi.org/10.1007/s11425-012-4437-4
  • [15] Hua-Lin Huang, Quiver approaches to quasi-Hopf algebras, J. Math. Phys. 50 (2009), no. 4, 043501, 9. MR 2513989 (2010d:16044), https://doi.org/10.1063/1.3103569
  • [16] Hua-Lin Huang, Gongxiang Liu, and Yu Ye, Quivers, quasi-quantum groups and finite tensor categories, Comm. Math. Phys. 303 (2011), no. 3, 595-612. MR 2786212 (2012d:16037), https://doi.org/10.1007/s00220-011-1229-6
  • [17] Michio Jimbo, A $ q$-difference analogue of $ U({\mathfrak{g}})$ and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63-69. MR 797001 (86k:17008), https://doi.org/10.1007/BF00704588
  • [18] Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer-Verlag, New York, 1995. MR 1321145 (96e:17041)
  • [19] Gongxiang Liu, The quasi-Hopf analogue of $ {\bf u}_q(\mathfrak{sl}_2)$, Math. Res. Lett. 21 (2014), no. 3, 585-603. MR 3272031, https://doi.org/10.4310/MRL.2014.v21.n3.a12
  • [20] George Lusztig, Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra, J. Amer. Math. Soc. 3 (1990), no. 1, 257-296. MR 1013053 (91e:17009), https://doi.org/10.2307/1990988
  • [21] George Lusztig, Quantum groups at roots of $ 1$, Geom. Dedicata 35 (1990), no. 1-3, 89-113. MR 1066560 (91j:17018), https://doi.org/10.1007/BF00147341
  • [22] S. Majid, Quantum double for quasi-Hopf algebras, Lett. Math. Phys. 45 (1998), no. 1, 1-9. MR 1631648 (2000b:16077), https://doi.org/10.1023/A:1007450123281
  • [23] Shahn Majid, Quasi-quantum groups as internal symmetries of topological quantum field theories, Lett. Math. Phys. 22 (1991), no. 2, 83-90. MR 1122044 (92i:81130), https://doi.org/10.1007/BF00405171
  • [24] Peter Schauenburg, Hopf modules and the double of a quasi-Hopf algebra, Trans. Amer. Math. Soc. 354 (2002), no. 8, 3349-3378 (electronic). MR 1897403 (2003c:16050), https://doi.org/10.1090/S0002-9947-02-02980-X
  • [25] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324 (95f:18001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 17B37, 16T05

Retrieve articles in all journals with MSC (2010): 17B37, 16T05


Additional Information

Gongxiang Liu
Affiliation: Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China
Email: gxliu@nju.edu.cn

Fred Van Oystaeyen
Affiliation: Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
Email: fred.vanoystaeyen@ua.ac.be

Yinhuo Zhang
Affiliation: Department of Mathematics and Statistics, University of Hasselt, 3590 Diepenbeek, Belgium
Email: yinhuo.zhang@uhasselt.be

DOI: https://doi.org/10.1090/tran/6731
Received by editor(s): October 20, 2014
Received by editor(s) in revised form: April 1, 2015
Published electronically: August 22, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society