Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 
 

 

Every abelian group is the class group of a simple Dedekind domain


Author: Daniel Smertnig
Journal: Trans. Amer. Math. Soc. 369 (2017), 2477-2491
MSC (2010): Primary 16E60; Secondary 16N60, 16P40, 19A49
DOI: https://doi.org/10.1090/tran/6868
Published electronically: July 20, 2016
MathSciNet review: 3592518
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A classical result of Claborn states that every abelian group is the class group of a commutative Dedekind domain. Among noncommutative Dedekind prime rings, apart from PI rings, the simple Dedekind domains form a second important class. We show that every abelian group is the class group of a noncommutative simple Dedekind domain. This solves an open problem stated by Levy and Robson in their recent monograph on hereditary Noetherian prime rings.


References [Enhancements On Off] (What's this?)

  • [Cha11] Gyu Whan Chang, Every divisor class of Krull monoid domains contains a prime ideal, J. Algebra 336 (2011), 370-377. MR 2802549 (2012d:13024), https://doi.org/10.1016/j.jalgebra.2011.03.015
  • [Cla66] Luther Claborn, Every abelian group is a class group, Pacific J. Math. 18 (1966), 219-222. MR 0195889 (33 #4085)
  • [Cla09] Pete L. Clark, Elliptic Dedekind domains revisited, Enseign. Math. (2) 55 (2009), no. 3-4, 213-225. MR 2583777 (2010m:13016), https://doi.org/10.4171/LEM/55-3-1
  • [Fos73] Robert M. Fossum, The divisor class group of a Krull domain, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74, Springer-Verlag, New York-Heidelberg, 1973. MR 0382254 (52 #3139)
  • [GG03] Alfred Geroldinger and Rüdiger Göbel, Half-factorial subsets in infinite abelian groups, Houston J. Math. 29 (2003), no. 4, 841-858 (electronic). MR 2045657 (2004m:13050)
  • [GHK06] Alfred Geroldinger and Franz Halter-Koch, Non-unique factorizations: Algebraic, combinatorial and analytic theory, Pure and Applied Mathematics (Boca Raton), vol. 278, Chapman & Hall/CRC, Boca Raton, FL, 2006. MR 2194494 (2006k:20001)
  • [Gil84] Robert Gilmer, Commutative semigroup rings, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1984. MR 741678 (85e:20058)
  • [Gil06] Robert Gilmer, Some questions for further research, Multiplicative ideal theory in commutative algebra, Springer, New York, 2006, pp. 405-415. MR 2265822 (2007h:13003), https://doi.org/10.1007/978-0-387-36717-0_24
  • [GS05] K. R. Goodearl and J. T. Stafford, Simplicity of noncommutative Dedekind domains, Proc. Amer. Math. Soc. 133 (2005), no. 3, 681-686. MR 2113915 (2005j:16016), https://doi.org/10.1090/S0002-9939-04-07574-4
  • [LG72] C. R. Leedham-Green, The class group of Dedekind domains, Trans. Amer. Math. Soc. 163 (1972), 493-500. MR 0292806 (45 #1888)
  • [LR11] Lawrence S. Levy and J. Chris Robson, Hereditary Noetherian prime rings and idealizers, Mathematical Surveys and Monographs, vol. 174, American Mathematical Society, Providence, RI, 2011. MR 2790801 (2012h:16041)
  • [MR01] J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Revised edition, Graduate Studies in Mathematics, vol. 30, American Mathematical Society, Providence, RI, 2001. With the cooperation of L. W. Small. MR 1811901 (2001i:16039)
  • [Ros73] Michael Rosen, $ S$-units and $ S$-class group in algebraic function fields, J. Algebra 26 (1973), 98-108. MR 0327777 (48 #6119)
  • [Ros76] Michael Rosen, Elliptic curves and Dedekind domains, Proc. Amer. Math. Soc. 57 (1976), no. 2, 197-201. MR 0417190 (54 #5248)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 16E60, 16N60, 16P40, 19A49

Retrieve articles in all journals with MSC (2010): 16E60, 16N60, 16P40, 19A49


Additional Information

Daniel Smertnig
Affiliation: Institute for Mathematics and Scientific Computing, University of Graz, NAWI Graz, Heinrichstraße 36, 8010 Graz, Austria
Email: daniel.smertnig@uni-graz.at

DOI: https://doi.org/10.1090/tran/6868
Keywords: Simple Dedekind prime rings, ideal class groups
Received by editor(s): April 8, 2015
Published electronically: July 20, 2016
Additional Notes: The author was supported by the Austrian Science Fund (FWF) project P26036-N26.
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society