Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the generic local Langlands correspondence for $ GSpin$ groups


Authors: Volker Heiermann and Yeansu Kim
Journal: Trans. Amer. Math. Soc. 369 (2017), 4275-4291
MSC (2010): Primary 11F70, 11S37, 22E50
DOI: https://doi.org/10.1090/tran/6791
Published electronically: December 22, 2016
MathSciNet review: 3624409
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the case of split $ GSpin$ groups, we prove an equality of $ L$-functions between automorphic local $ L$-functions defined by the Langlands-Shahidi method and local Artin $ L$-functions. Our method of proof is based on previous results of the first author which allow us to reduce the problem to supercuspidal representations of Levi subgroups of $ GSpin$, by constructing Langlands parameters for general generic irreducible admissible representations of $ GSpin $ from the one for generic irreducible supercuspidal representations of its Levi subgroups.


References [Enhancements On Off] (What's this?)

  • [1] James Arthur, The endoscopic classification of representations, American Mathematical Society Colloquium Publications, vol. 61, American Mathematical Society, Providence, RI, 2013. Orthogonal and symplectic groups. MR 3135650
  • [2] Mahdi Asgari, Local $ L$-functions for split spinor groups, Canad. J. Math. 54 (2002), no. 4, 673-693. MR 1913914 (2003i:11062), https://doi.org/10.4153/CJM-2002-025-8
  • [3] Mahdi Asgari and Freydoon Shahidi, Generic transfer for general spin groups, Duke Math. J. 132 (2006), no. 1, 137-190. MR 2219256 (2007d:11055a), https://doi.org/10.1215/S0012-7094-06-13214-3
  • [4] Mahdi Asgari and Freydoon Shahidi, Image of functoriality for general spin groups, Manuscripta Math. 144 (2014), no. 3-4, 609-638. MR 3227529, https://doi.org/10.1007/s00229-014-0662-1
  • [5] I. N. Bernstein and A. V. Zelevinsky, Induced representations of reductive $ {\mathfrak{p}}$-adic groups. I, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 441-472. MR 0579172 (58 #28310)
  • [6] Roger W. Carter, Finite groups of Lie type, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1985. Conjugacy classes and complex characters; A Wiley-Interscience Publication. MR 794307 (87d:20060)
  • [7] J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi, On lifting from classical groups to $ {\rm GL}_N$, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 5-30. MR 1863734 (2002i:11048), https://doi.org/10.1007/s10240-001-8187-z
  • [8] J. W. Cogdell, H. H. Kim, I. I. Piatetski-Shapiro, and F. Shahidi, Functoriality for the classical groups, Publ. Math. Inst. Hautes Études Sci. 99 (2004), 163-233. MR 2075885 (2006a:22010), https://doi.org/10.1007/s10240-004-0020-z
  • [9] J. W. Cogdell, I. I. Piatetski-Shapiro, and F. Shahidi, Functoriality for the quasisplit classical groups, On certain $ L$-functions, Clay Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 117-140. MR 2767514
  • [10] Michael Harris and Richard Taylor, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ, 2001. With an appendix by Vladimir G. Berkovich. MR 1876802 (2002m:11050)
  • [11] Volker Heiermann, Décomposition spectrale et représentations spéciales d'un groupe réductif $ p$-adique, J. Inst. Math. Jussieu 3 (2004), no. 3, 327-395 (French, with English and French summaries). MR 2074429 (2005k:22023), https://doi.org/10.1017/S1474748004000106
  • [12] Volker Heiermann, Orbites unipotentes et pôles d'ordre maximal de la fonction $ \mu $ de Harish-Chandra, Canad. J. Math. 58 (2006), no. 6, 1203-1228 (French, with French summary). MR 2270924 (2008b:11060), https://doi.org/10.4153/CJM-2006-043-8
  • [13] Volker Heiermann, Unipotent orbits and local $ L$-functions, J. Reine Angew. Math. 596 (2006), 103-114. MR 2254807 (2008b:22011), https://doi.org/10.1515/CRELLE.2006.054
  • [14] Guy Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs $ \epsilon $ de paires, Invent. Math. 113 (1993), no. 2, 339-350 (French, with English and French summaries). MR 1228128 (96e:11078), https://doi.org/10.1007/BF01244309
  • [15] Guy Henniart, Une preuve simple des conjectures de Langlands pour $ {\rm GL}(n)$ sur un corps $ p$-adique, Invent. Math. 139 (2000), no. 2, 439-455 (French, with English summary). MR 1738446 (2001e:11052), https://doi.org/10.1007/s002220050012
  • [16] Guy Henniart, Correspondance de Langlands et fonctions $ L$ des carrés extérieur et symétrique, Int. Math. Res. Not. IMRN 4 (2010), 633-673 (French). MR 2595008 (2011c:22028), https://doi.org/10.1093/imrn/rnp150
  • [17] H. Jacquet, I. I. Piatetskii-Shapiro, and J. A. Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), no. 2, 367-464. MR 701565 (85g:11044), https://doi.org/10.2307/2374264
  • [18] Henry H. Kim, Applications of Langlands' functorial lift of odd orthogonal groups, Trans. Amer. Math. Soc. 354 (2002), no. 7, 2775-2796 (electronic). MR 1895203 (2003c:22025), https://doi.org/10.1090/S0002-9947-02-02969-0
  • [19] Wook Kim, Standard module conjecture for GSpin groups, ProQuest LLC, Ann Arbor, MI, 2005. Thesis (Ph.D.)-Purdue University. MR 2707989
  • [20] Yean Su Kim, L-functions from Langlands-Shahidi method for GSpin groups and the generic Arthur packet conjecture, ProQuest LLC, Ann Arbor, MI, 2013. Thesis (Ph.D.)-Purdue University. MR 3211494
  • [21] Y. Kim, Langlands-Shahidi $ L$-functions for GSpin groups and the generic Arthur packet conjecture, preprint.
  • [22] Yeansu Kim, Strongly positive representations of $ GSpin_{2n+1}$ and the Jacquet module method, Math. Z. 279 (2015), no. 1-2, 271-296. With an appendix by Ivan Matić. MR 3299853, https://doi.org/10.1007/s00209-014-1367-6
  • [23] Yeansu Kim, Strongly positive representations of even GSpin groups, Pacific J. Math. 280 (2016), no. 1, 69-88. MR 3441217, https://doi.org/10.2140/pjm.2016.280.69
  • [24] R. P. Langlands, On the classification of irreducible representations of real algebraic groups, Representation theory and harmonic analysis on semisimple Lie groups, Math. Surveys Monogr., vol. 31, Amer. Math. Soc., Providence, RI, 1989, pp. 101-170. MR 1011897 (91e:22017), https://doi.org/10.1090/surv/031/03
  • [25] Baiying Liu, Genericity of representations of $ p$-adic $ {\rm Sp}_{2n}$ and local Langlands parameters, Canad. J. Math. 63 (2011), no. 5, 1107-1136. MR 2865733 (2012i:22026), https://doi.org/10.4153/CJM-2011-017-2
  • [26] Freydoon Shahidi, Functional equation satisfied by certain $ L$-functions, Compositio Math. 37 (1978), no. 2, 171-207. MR 0498494 (58 #16603)
  • [27] Freydoon Shahidi, On certain $ L$-functions, Amer. J. Math. 103 (1981), no. 2, 297-355. MR 610479 (82i:10030), https://doi.org/10.2307/2374219
  • [28] Freydoon Shahidi, Fourier transforms of intertwining operators and Plancherel measures for $ {\rm GL}(n)$, Amer. J. Math. 106 (1984), no. 1, 67-111. MR 729755 (86b:22031), https://doi.org/10.2307/2374430
  • [29] Freydoon Shahidi, Local coefficients as Artin factors for real groups, Duke Math. J. 52 (1985), no. 4, 973-1007. MR 816396 (87m:11049), https://doi.org/10.1215/S0012-7094-85-05252-4
  • [30] Freydoon Shahidi, On the Ramanujan conjecture and finiteness of poles for certain $ L$-functions, Ann. of Math. (2) 127 (1988), no. 3, 547-584. MR 942520 (89h:11021), https://doi.org/10.2307/2007005
  • [31] Freydoon Shahidi, A proof of Langlands' conjecture on Plancherel measures; complementary series for $ p$-adic groups, Ann. of Math. (2) 132 (1990), no. 2, 273-330. MR 1070599 (91m:11095), https://doi.org/10.2307/1971524
  • [32] Freydoon Shahidi, On multiplicativity of local factors, Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989) Israel Math. Conf. Proc., vol. 3, Weizmann, Jerusalem, 1990, pp. 279-289. MR 1159120 (93e:11144)
  • [33] Freydoon Shahidi, Eisenstein series and automorphic $ L$-functions, American Mathematical Society Colloquium Publications, vol. 58, American Mathematical Society, Providence, RI, 2010. MR 2683009 (2012d:11119)
  • [34] Freydoon Shahidi, Arthur packets and the Ramanujan conjecture, Kyoto J. Math. 51 (2011), no. 1, 1-23. MR 2784745, https://doi.org/10.1215/0023608X-2010-018
  • [35] Allan J. Silberger, The Langlands quotient theorem for $ p$-adic groups, Math. Ann. 236 (1978), no. 2, 95-104. MR 0507262 (58 #22413)
  • [36] Marko Tadić, Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19 (1986), no. 3, 335-382. MR 870688 (88b:22021)
  • [37] A. V. Zelevinsky, Induced representations of reductive $ {\mathfrak{p}}$-adic groups. II. On irreducible representations of $ {\rm GL}(n)$, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165-210. MR 584084 (83g:22012)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11F70, 11S37, 22E50

Retrieve articles in all journals with MSC (2010): 11F70, 11S37, 22E50


Additional Information

Volker Heiermann
Affiliation: Aix Marseille Université, CNRS, Centrale Marseille, I2M, UMR 7373, 13453 Marseille, France
Email: volker.heiermann@univ-amu.fr

Yeansu Kim
Affiliation: Department of Mathematics, University of Iowa, 14 MacLean Hall, Iowa City, Iowa 52242 – and – Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany
Address at time of publication: Department of Mathematics Education, Chonnam National University, 77, Yongbong-ro, Buk-gu, Gwangju, 61186, Korea
Email: ykim@jnu.ac.kr

DOI: https://doi.org/10.1090/tran/6791
Keywords: Generic Arthur packet conjecture, local Langlands correspondence, Langlands-Shahidi method
Received by editor(s): February 3, 2014
Received by editor(s) in revised form: July 15, 2015
Published electronically: December 22, 2016
Additional Notes: The first author has benefitted from the help of the Agence Nationale de la Recherche with reference ANR-08-BLAN-0259-02.
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society