Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Vector bundles on proper toric 3-folds and certain other schemes


Authors: Markus Perling and Stefan Schröer
Journal: Trans. Amer. Math. Soc. 369 (2017), 4787-4815
MSC (2010): Primary 14J60, 14M25
DOI: https://doi.org/10.1090/tran/6813
Published electronically: November 28, 2016
MathSciNet review: 3632550
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a proper algebraic $ n$-dimensional scheme $ Y$ admits non-trivial vector bundles of rank $ n$, even if $ Y$ is non-projective, provided that there is a modification containing a projective Cartier divisor that intersects the exceptional locus in only finitely many points. Moreover, there are such vector bundles with arbitrarily large top Chern number. Applying this to toric varieties, we infer that every proper toric threefold admits such vector bundles of rank three. Furthermore, we describe a class of higher-dimensional toric varieties for which the result applies, in terms of convexity properties around rays.


References [Enhancements On Off] (What's this?)

  • [1] Takuro Abe, The elementary transformation of vector bundles on regular schemes, Trans. Amer. Math. Soc. 359 (2007), no. 9, 4285-4295 (electronic). MR 2309185, https://doi.org/10.1090/S0002-9947-07-04161-X
  • [2] Dave Anderson and Sam Payne, Operational $ K$-theory, Doc. Math. 20 (2015), 357-399. MR 3398716
  • [3] M. Artin, Algebraic approximation of structures over complete local rings, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 23-58. MR 0268188
  • [4] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3) 7 (1957), 414-452. MR 0131423
  • [5] P. Berthelot, A. Grothendieck, and L. Illusie (eds.), Théorie des intersections et théorème de Riemann-Roch, Séminaire de Géométrie Algébrique du Bois-Marie 1966-1967 (SGA 6); Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, Berlin-New York, 1971 (French). Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. MR 0354655
  • [6] F. A. Bogomolov and A. N. Landia, $ 2$-cocycles and Azumaya algebras under birational transformations of algebraic schemes, Algebraic geometry (Berlin, 1988), Compositio Math. 76 (1990), no. 1-2, 1-5. MR 1078854
  • [7] Armand Borel and Jean-Pierre Serre, Le théorème de Riemann-Roch, Bull. Soc. Math. France 86 (1958), 97-136 (French). MR 0116022
  • [8] Brian Conrad and A. J. de Jong, Approximation of versal deformations, J. Algebra 255 (2002), no. 2, 489-515. MR 1935511, https://doi.org/10.1016/S0021-8693(02)00144-8
  • [9] G. Cortiñas, C. Haesemeyer, Mark E. Walker, and C. Weibel, The $ K$-theory of toric varieties, Trans. Amer. Math. Soc. 361 (2009), no. 6, 3325-3341. MR 2485429, https://doi.org/10.1090/S0002-9947-08-04750-8
  • [10] G. Cortiñas, C. Haesemeyer, Mark E. Walker, and C. Weibel, The $ K$-theory of toric varieties in positive characteristic, J. Topol. 7 (2014), no. 1, 247-286. MR 3180619, https://doi.org/10.1112/jtopol/jtt026
  • [11] David A. Cox, John B. Little, and Henry K. Schenck, Toric varieties, Graduate Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI, 2011. MR 2810322
  • [12] Pierre Deligne, Le théorème de plongement de Nagata, Kyoto J. Math. 50 (2010), no. 4, 661-670 (French, with English and French summaries). MR 2740689, https://doi.org/10.1215/0023608X-2010-009
  • [13] Herbert Edelsbrunner, Algorithms in combinatorial geometry, EATCS Monographs on Theoretical Computer Science, vol. 10, Springer-Verlag, Berlin, 1987. MR 904271
  • [14] Dan Edidin, Brendan Hassett, Andrew Kresch, and Angelo Vistoli, Brauer groups and quotient stacks, Amer. J. Math. 123 (2001), no. 4, 761-777. MR 1844577
  • [15] John A. Eagon and M. Hochster, $ R$-sequences and indeterminates, Quart. J. Math. Oxford Ser. (2) 25 (1974), 61-71. MR 0337934
  • [16] Markus Eikelberg, The Picard group of a compact toric variety, Results Math. 22 (1992), no. 1-2, 509-527. MR 1174922, https://doi.org/10.1007/BF03323103
  • [17] T. J. Ford and R. Stimets, The Picard group of a general toric variety of dimension three, Comm. Algebra 30 (2002), no. 12, 5771-5779. MR 1941922, https://doi.org/10.1081/AGB-120016010
  • [18] Takao Fujita, Semipositive line bundles, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1983), no. 2, 353-378. MR 722501
  • [19] William Fulton, Introduction to toric varieties, The William H. Roever Lectures in Geometry, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. MR 1234037
  • [20] William Fulton and Robert MacPherson, Categorical framework for the study of singular spaces, Mem. Amer. Math. Soc. 31 (1981), no. 243, vi+165. MR 609831, https://doi.org/10.1090/memo/0243
  • [21] O. Gabber, On space filling curves and Albanese varieties, Geom. Funct. Anal. 11 (2001), no. 6, 1192-1200. MR 1878318, https://doi.org/10.1007/s00039-001-8228-2
  • [22] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 1994. MR 1264417
  • [23] Saman Gharib and Kalle Karu, Vector bundles on toric varieties, C. R. Math. Acad. Sci. Paris 350 (2012), no. 3-4, 209-212 (English, with English and French summaries). MR 2891113, https://doi.org/10.1016/j.crma.2011.12.013
  • [24] Jean Giraud, Cohomologie non abélienne, Die Grundlehren der mathematischen Wissenschaften, Band 179, Springer-Verlag, Berlin-New York, 1971 (French). MR 0344253
  • [25] Jacob Eli Goodman, Affine open subsets of algebraic varieties and ample divisors, Ann. of Math. (2) 89 (1969), 160-183. MR 0242843
  • [26] Julien Grivaux, Chern classes in Deligne cohomology for coherent analytic sheaves, Math. Ann. 347 (2010), no. 2, 249-284. MR 2606937, https://doi.org/10.1007/s00208-009-0430-9
  • [27] Philipp Gross, The resolution property of algebraic surfaces, Compos. Math. 148 (2012), no. 1, 209-226. MR 2881314, https://doi.org/10.1112/S0010437X11005628
  • [28] Alexander Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J. (2) 9 (1957), 119-221 (French). MR 0102537
  • [29] A. Grothendieck and J. A. Dieudonné, Eléments de géométrie algébrique. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 166, Springer-Verlag, Berlin, 1971 (French). MR 3075000
  • [30] A. Grothendieck, Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes, Inst. Hautes Études Sci. Publ. Math. 8 (1961), 222. MR 0217084
  • [31] A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I, Inst. Hautes Études Sci. Publ. Math. 11 (1961), 167 (French). MR 0163910
  • [32] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255. MR 0217086
  • [33] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 0238860
  • [34] A. Grothendieck (ed.), Revêtements étales et groupe fondamental, Séminaire de Géométrie Algébrique du Bois Marie 1960-1961 (SGA 1), augmenté de deux exposés de M. Raynaud, Lecture Notes in Mathematics, Vol. 224, Springer-Verlag, Berlin-New York, 1971 (French). MR 0354651
  • [35] Joseph Gubeladze, Toric varieties with huge Grothendieck group, Adv. Math. 186 (2004), no. 1, 117-124. MR 2065508, https://doi.org/10.1016/j.aim.2003.07.009
  • [36] Robin Hartshorne, Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin-New York, 1970. Notes written in collaboration with C. Musili. MR 0282977
  • [37] Steven L. Kleiman, Geometry on Grassmannians and applications to splitting bundles and smoothing cycles, Inst. Hautes Études Sci. Publ. Math. 36 (1969), 281-297. MR 0265371
  • [38] Sam Payne, Toric vector bundles, branched covers of fans, and the resolution property, J. Algebraic Geom. 18 (2009), no. 1, 1-36. MR 2448277, https://doi.org/10.1090/S1056-3911-08-00485-2
  • [39] G. Kempf, Finn Faye Knudsen, D. Mumford, and B. Saint-Donat, Toroidal embeddings. I, Lecture Notes in Mathematics, Vol. 339, Springer-Verlag, Berlin-New York, 1973. MR 0335518
  • [40] Andrew Kresch, Flattening stratification and the stack of partial stabilizations of prestable curves, Bull. Lond. Math. Soc. 45 (2013), no. 1, 93-102. MR 3033957, https://doi.org/10.1112/blms/bds066
  • [41] B. Moishezon, The algebraic analog of compact complex spaces with a sufficiently large field of meromorphic functions. I, Math. USSR Izv. 3 (1969), 167-226.
  • [42] Tadao Oda, Torus embeddings and applications, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 57, Tata Institute of Fundamental Research, Bombay; by Springer-Verlag, Berlin-New York, 1978. Based on joint work with Katsuya Miyake. MR 546291
  • [43] Tadao Oda, Convex bodies and algebraic geometry: An introduction to the theory of toric varieties, Translated from the Japanese, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 15, Springer-Verlag, Berlin, 1988. MR 922894
  • [44] Christian Okonek, Michael Schneider, and Heinz Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston, Mass., 1980. MR 561910
  • [45] Bjorn Poonen, Bertini theorems over finite fields, Ann. of Math. (2) 160 (2004), no. 3, 1099-1127. MR 2144974, https://doi.org/10.4007/annals.2004.160.1099
  • [46] Dorin Popescu, General Néron desingularization, Nagoya Math. J. 100 (1985), 97-126. MR 818160
  • [47] Stefan Schröer, On non-projective normal surfaces, Manuscripta Math. 100 (1999), no. 3, 317-321. MR 1726231, https://doi.org/10.1007/s002290050203
  • [48] Stefan Schröer and Gabriele Vezzosi, Existence of vector bundles and global resolutions for singular surfaces, Compos. Math. 140 (2004), no. 3, 717-728. MR 2041778, https://doi.org/10.1112/S0010437X0300071X
  • [49] J.-P. Serre, Modules projectifs et espaces fibrés à fibre vectorielle, Séminaire P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot, 1957/58, Fasc. 2, Exposé 23, Secrétariat mathématique, Paris, 1958, pp. 18 (French). MR 0177011
  • [50] Richard G. Swan, Néron-Popescu desingularization, Algebra and geometry (Taipei, 1995) Lect. Algebra Geom., vol. 2, Int. Press, Cambridge, MA, 1998, pp. 135-192. MR 1697953
  • [51] Burt Totaro, The resolution property for schemes and stacks, J. Reine Angew. Math. 577 (2004), 1-22. MR 2108211, https://doi.org/10.1515/crll.2004.2004.577.1
  • [52] Jörg Winkelmann, Every compact complex manifold admits a holomorphic vector bundle, Rev. Roumaine Math. Pures Appl. 38 (1993), no. 7-8, 743-744. MR 1263217

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14J60, 14M25

Retrieve articles in all journals with MSC (2010): 14J60, 14M25


Additional Information

Markus Perling
Affiliation: Fakultät für Mathematik, Universität Bielefeld, Postfach 100 131, 33501 Bielefeld, Germany
Email: perling@math.uni-bielefeld.de

Stefan Schröer
Affiliation: Mathematisches Institut, Heinrich-Heine-Universität, 40204 Düsseldorf, Germany
Email: schroeer@math.uni-duesseldorf.de

DOI: https://doi.org/10.1090/tran/6813
Received by editor(s): November 4, 2014
Received by editor(s) in revised form: July 16, 2015
Published electronically: November 28, 2016
Article copyright: © Copyright 2016 American Mathematical Society

American Mathematical Society