Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On 3-braid knots of finite concordance order


Author: Paolo Lisca
Journal: Trans. Amer. Math. Soc. 369 (2017), 5087-5112
MSC (2010): Primary 57M25
DOI: https://doi.org/10.1090/tran/6888
Published electronically: February 13, 2017
MathSciNet review: 3632561
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study 3-braid knots of finite smooth concordance order. A corollary of our main result is that a chiral 3-braid knot of finite concordance order is ribbon.


References [Enhancements On Off] (What's this?)

  • [1] John A. Baldwin, Heegaard Floer homology and genus one, one-boundary component open books, J. Topol. 1 (2008), no. 4, 963-992. MR 2461862, https://doi.org/10.1112/jtopol/jtn029
  • [2] Joan S. Birman and William W. Menasco, Studying links via closed braids. III. Classifying links which are closed $ 3$-braids, Pacific J. Math. 161 (1993), no. 1, 25-113. MR 1237139
  • [3] A. J. Casson and C. McA. Gordon, Cobordism of classical knots, À la recherche de la topologie perdue, Progr. Math., vol. 62, Birkhäuser Boston, Boston, MA, 1986, pp. 181-199. With an appendix by P. M. Gilmer. MR 900252
  • [4] Jae C. Cha and Charles Livingston, Knotinfo: Table of knot invariants, http://www.indiana.edu/~knotinfo, February 9, 2017.
  • [5] Andrew Donald, Embedding Seifert manifolds in $ S^4$, Trans. Amer. Math. Soc. 367 (2015), no. 1, 559-595. MR 3271270, https://doi.org/10.1090/S0002-9947-2014-06174-6
  • [6] S. K. Donaldson, The orientation of Yang-Mills moduli spaces and $ 4$-manifold topology, J. Differential Geom. 26 (1987), no. 3, 397-428. MR 910015
  • [7] Dieter Erle, Calculation of the signature of a 3-braid link, Kobe J. Math. 16 (1999), no. 2, 161-175. MR 1745024
  • [8] C. McA. Gordon and R. A. Litherland, On the signature of a link, Invent. Math. 47 (1978), no. 1, 53-69. MR 0500905
  • [9] Joshua Greene and Stanislav Jabuka, The slice-ribbon conjecture for 3-stranded pretzel knots, Amer. J. Math. 133 (2011), no. 3, 555-580. MR 2808326, https://doi.org/10.1353/ajm.2011.0022
  • [10] Joshua Evan Greene, Donaldson's theorem, Heegaard Floer homology, and knots with unknotting number one, Adv. Math. 255 (2014), 672-705. MR 3167496, https://doi.org/10.1016/j.aim.2014.01.018
  • [11] Shin'ichi Kinoshita and Hidetaka Terasaka, On unions of knots, Osaka Math. J. 9 (1957), 131-153. MR 0098386
  • [12] Ana G. Lecuona, On the slice-ribbon conjecture for Montesinos knots, Trans. Amer. Math. Soc. 364 (2012), no. 1, 233-285. MR 2833583, https://doi.org/10.1090/S0002-9947-2011-05385-7
  • [13] Ana G. Lecuona, On the slice-ribbon conjecture for pretzel knots, Algebr. Geom. Topol. 15 (2015), no. 4, 2133-2173. MR 3402337, https://doi.org/10.2140/agt.2015.15.2133
  • [14] Paolo Lisca, Lens spaces, rational balls and the ribbon conjecture, Geom. Topol. 11 (2007), 429-472. MR 2302495, https://doi.org/10.2140/gt.2007.11.429
  • [15] Paolo Lisca, Sums of lens spaces bounding rational balls, Algebr. Geom. Topol. 7 (2007), 2141-2164. MR 2366190, https://doi.org/10.2140/agt.2007.7.2141
  • [16] Paolo Lisca, Stein fillable contact 3-manifolds and positive open books of genus one, Algebr. Geom. Topol. 14 (2014), no. 4, 2411-2430. MR 3331617, https://doi.org/10.2140/agt.2014.14.2411
  • [17] Charles Livingston, A survey of classical knot concordance, Handbook of knot theory, Elsevier B. V., Amsterdam, 2005, pp. 319-347. MR 2179265, https://doi.org/10.1016/B978-044451452-3/50008-3
  • [18] Ciprian Manolescu and Brendan Owens, A concordance invariant from the Floer homology of double branched covers, Int. Math. Res. Not. IMRN 20 (2007), Art. ID rnm077, 21. MR 2363303, https://doi.org/10.1093/imrn/rnm077
  • [19] Kunio Murasugi, On closed $ 3$-braids, Memoirs of the American Mathematical Society, No. 151, American Mathematical Society, Providence, R.I., 1974. MR 0356023
  • [20] Stepan Yu. Orevkov, Quasipositivity problem for 3-braids, Turkish J. Math. 28 (2004), no. 1, 89-93. MR 2056762
  • [21] Lee Rudolph, Braided surfaces and Seifert ribbons for closed braids, Comment. Math. Helv. 58 (1983), no. 1, 1-37. MR 699004, https://doi.org/10.1007/BF02564622
  • [22] Lee Rudolph, Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 1, 51-59. MR 1193540, https://doi.org/10.1090/S0273-0979-1993-00397-5

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 57M25

Retrieve articles in all journals with MSC (2010): 57M25


Additional Information

Paolo Lisca
Affiliation: Dipartimento di Matematica, Largo Bruno Pontecorvo, 5, Università di Pisa, I-56127 Pisa, Italy
Email: paolo.lisca@unipi.it

DOI: https://doi.org/10.1090/tran/6888
Received by editor(s): April 21, 2015
Received by editor(s) in revised form: September 26, 2015, and December 15, 2015
Published electronically: February 13, 2017
Additional Notes: The author was partially supported by the PRIN–MIUR research project 2010–2011 “Varietà reali e complesse: geometria, topologia e analisi armonica”.
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society