Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

From Aztec diamonds to pyramids: Steep tilings


Authors: Jérémie Bouttier, Guillaume Chapuy and Sylvie Corteel
Journal: Trans. Amer. Math. Soc. 369 (2017), 5921-5959
MSC (2010): Primary 05A17, 05A19, 05E05, 82B20
DOI: https://doi.org/10.1090/tran/7169
Published electronically: April 24, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a family of domino tilings that includes tilings of the Aztec diamond and pyramid partitions as special cases. These tilings live in a strip of $ \mathbb{Z}^2$ of the form $ 1\leq x-y\leq 2\ell $ for some integer $ \ell \geq 1$, and are parametrized by a binary word $ w\in \{+,-\}^{2\ell }$ that encodes some periodicity conditions at infinity. Aztec diamond and pyramid partitions correspond respectively to $ w=(+-)^\ell $ and to the limit case $ w=+^\infty -^\infty $. For each word $ w$ and for different types of boundary conditions, we obtain a nice product formula for the generating function of the associated tilings with respect to the number of flips, that admits a natural multivariate generalization. The main tools are a bijective correspondence with sequences of interlaced partitions and the vertex operator formalism (which we slightly extend in order to handle Littlewood-type identities). In probabilistic terms our tilings map to Schur processes of different types (standard, Pfaffian and periodic). We also introduce a more general model that interpolates between domino tilings and plane partitions.


References [Enhancements On Off] (What's this?)

  • [ACJvM15] Mark Adler, Sunil Chhita, Kurt Johansson, and Pierre van Moerbeke, Tacnode GUE-minor processes and double Aztec diamonds, Probab. Theory Related Fields 162 (2015), no. 1-2, 275-325. MR 3350046, https://doi.org/10.1007/s00440-014-0573-9
  • [AJvM14] Mark Adler, Kurt Johansson, and Pierre van Moerbeke, Double Aztec diamonds and the tacnode process, Adv. Math. 252 (2014), 518-571. MR 3144240, https://doi.org/10.1016/j.aim.2013.10.012
  • [BBB14] Dan Betea, Cédric Boutillier, Jérémie Bouttier, Guillaume Chapuy, Sylvie Corteel, and Mirjana Vuletić, Perfect sampling algorithm for Schur processes, 2014, arXiv:1407.3764 [math.PR].
  • [BBC17] Cédric Boutillier, Jérémie Bouttier, Guillaume Chapuy, Sylvie Corteel, and Sanjay Ramassamy, Dimers on rail yard graphs, Ann. Inst. Henri Poincaré D, to appear, 2017, arXiv:1504.05176 [math-ph].
  • [BC14] Alexei Borodin and Ivan Corwin, Macdonald processes, Probab. Theory Related Fields 158 (2014), no. 1-2, 225-400. MR 3152785, https://doi.org/10.1007/s00440-013-0482-3
  • [BF14] Alexei Borodin and Patrik L. Ferrari, Anisotropic growth of random surfaces in $ 2+1$ dimensions, Comm. Math. Phys. 325 (2014), no. 2, 603-684. MR 3148098, https://doi.org/10.1007/s00220-013-1823-x
  • [Bor07] Alexei Borodin, Periodic Schur process and cylindric partitions, Duke Math. J. 140 (2007), no. 3, 391-468. MR 2362241, https://doi.org/10.1215/S0012-7094-07-14031-6
  • [Bor11] Alexei Borodin, Schur dynamics of the Schur processes, Adv. Math. 228 (2011), no. 4, 2268-2291. MR 2836121, https://doi.org/10.1016/j.aim.2011.06.038
  • [BR05] Alexei Borodin and Eric M. Rains, Eynard-Mehta theorem, Schur process, and their Pfaffian analogs, J. Stat. Phys. 121 (2005), no. 3-4, 291-317. MR 2185331, https://doi.org/10.1007/s10955-005-7583-z
  • [CEP96] Henry Cohn, Noam Elkies, and James Propp, Local statistics for random domino tilings of the Aztec diamond, Duke Math. J. 85 (1996), no. 1, 117-166. MR 1412441, https://doi.org/10.1215/S0012-7094-96-08506-3
  • [CSV11] Sylvie Corteel, Cyrille Savelief, and Mirjana Vuletić, Plane overpartitions and cylindric partitions, J. Combin. Theory Ser. A 118 (2011), no. 4, 1239-1269. MR 2755080, https://doi.org/10.1016/j.jcta.2010.12.001
  • [CY14] Sunil Chhita and Benjamin Young, Coupling functions for domino tilings of Aztec diamonds, Adv. Math. 259 (2014), 173-251. MR 3197656, https://doi.org/10.1016/j.aim.2014.01.023
  • [DFSG14] Philippe Di Francesco and Rodrigo Soto-Garrido, Arctic curves of the octahedron equation, J. Phys. A 47 (2014), no. 28, 285204, 34. MR 3228361, https://doi.org/10.1088/1751-8113/47/28/285204
  • [EKLP92a] Noam Elkies, Greg Kuperberg, Michael Larsen, and James Propp, Alternating-sign matrices and domino tilings. I, J. Algebraic Combin. 1 (1992), no. 2, 111-132. See also the erratum available at http://faculty.uml.edu/jpropp/aztec.errata.html. MR 1226347, https://doi.org/10.1023/A:1022420103267
  • [EKLP92b] Noam Elkies, Greg Kuperberg, Michael Larsen, and James Propp, Alternating-sign matrices and domino tilings. II, J. Algebraic Combin. 1 (1992), no. 3, 219-234. MR 1194076, https://doi.org/10.1023/A:1022483817303
  • [Kac90] Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. MR 1104219
  • [Ken05] R. Kenyon, Talk given at the workshop on Random partitions and Calabi-Yau crystals, Amsterdam, 2005. Slides available at http://www.math.brown.edu/~rkenyon/talks/pyramids.pdf.
  • [Kra96] C. Krattenthaler, A bijective proof of the hook-content formula for super Schur functions and a modified jeu de taquin, Electron. J. Combin. 3 (1996), no. 2, Research Paper 14, approx. 24 pp.. The Foata Festschrift. MR 1392499
  • [Kra06] C. Krattenthaler, Growth diagrams, and increasing and decreasing chains in fillings of Ferrers shapes, Adv. in Appl. Math. 37 (2006), no. 3, 404-431. MR 2261181, https://doi.org/10.1016/j.aam.2005.12.006
  • [Mac95] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
  • [MJD00] T. Miwa, M. Jimbo, and E. Date, Solitons, Cambridge Tracts in Mathematics, vol. 135, Cambridge University Press, Cambridge, 2000. Differential equations, symmetries and infinite-dimensional algebras; Translated from the 1993 Japanese original by Miles Reid. MR 1736222
  • [Oko01] Andrei Okounkov, Infinite wedge and random partitions, Selecta Math. (N.S.) 7 (2001), no. 1, 57-81. MR 1856553, https://doi.org/10.1007/PL00001398
  • [OR03] Andrei Okounkov and Nikolai Reshetikhin, Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. Amer. Math. Soc. 16 (2003), no. 3, 581-603. MR 1969205, https://doi.org/10.1090/S0894-0347-03-00425-9
  • [PP96] Igor Pak and Alexander Postnikov, Oscillating tableaux, $ S_p \times S_q$-modules, and Robinson-Schensted-Knuth correspondence, 8th International Conference on Formal Power Series and Algebraic Combinatorics, University of Minnesota, 1996. Paper available at http://www-igm.univ-mlv.fr/~fpsac/FPSAC96/articles.html.
  • [Pro93] James Propp, Lattice structure for orientations of graphs, manuscript available at http://faculty.uml.edu/jpropp/orient.html, 1993.
  • [Pro97] James Propp, Talk given at the American Mathematical Society Meeting in San Diego, January 1997. Slides available at http://jamespropp.org/san_diego.pdf.
  • [Rem84] Jeffrey B. Remmel, The combinatorics of $ (k,l)$-hook Schur functions, Combinatorics and algebra (Boulder, Colo., 1983) Contemp. Math., vol. 34, Amer. Math. Soc., Providence, RI, 1984, pp. 253-287. MR 777704, https://doi.org/10.1090/conm/034/777704
  • [Sta99] Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282
  • [Sze08] Balázs Szendrői, Non-commutative Donaldson-Thomas invariants and the conifold, Geom. Topol. 12 (2008), no. 2, 1171-1202. MR 2403807, https://doi.org/10.2140/gt.2008.12.1171
  • [Thu90] William P. Thurston, Conway's tiling groups, Amer. Math. Monthly 97 (1990), no. 8, 757-773. MR 1072815, https://doi.org/10.2307/2324578
  • [Vul09a] Mirjana Vuletić, A generalization of MacMahon's formula, Trans. Amer. Math. Soc. 361 (2009), no. 5, 2789-2804. MR 2471939, https://doi.org/10.1090/S0002-9947-08-04753-3
  • [Vul09b] Mirjana Vuletic, The Pfaffian Schur process, ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)-California Institute of Technology. MR 3054919
  • [Yan91] Bo-Yin Yang, Two enumeration problems about the Aztec diamonds, ProQuest LLC, Ann Arbor, MI, 1991. Thesis (Ph.D.)-Massachusetts Institute of Technology. MR 2716343
  • [You09] Ben Young, Computing a pyramid partition generating function with dimer shuffling, J. Combin. Theory Ser. A 116 (2009), no. 2, 334-350. MR 2475021, https://doi.org/10.1016/j.jcta.2008.06.006
  • [You10] Benjamin Young, Generating functions for colored 3D Young diagrams and the Donaldson-Thomas invariants of orbifolds, Duke Math. J. 152 (2010), no. 1, 115-153. With an appendix by Jim Bryan. MR 2643058, https://doi.org/10.1215/00127094-2010-009
  • [ZJ12] Paul Zinn-Justin, Schur functions and Littlewood-Richardson rule from exactly solvable tiling models, Chern-Simons Research Lectures, Berkeley, 2012. Slides available at http://www.lpthe.jussieu.fr/~pzinn/semi/berkeley.pdf.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 05A17, 05A19, 05E05, 82B20

Retrieve articles in all journals with MSC (2010): 05A17, 05A19, 05E05, 82B20


Additional Information

Jérémie Bouttier
Affiliation: Institut de Physique Théorique, CEA, IPhT, 91191 Gif-sur-Yvette, France – and – CNRS URA 2306 and Département de Mathématiques et Applications, École normale supérieure, 45 rue d’Ulm, F-75231 Paris Cedex 05, France
Email: jeremie.bouttier@cea.fr

Guillaume Chapuy
Affiliation: LIAFA, CNRS et Université Paris Diderot, Case 7014, F-75205 Paris Cedex 13, France
Email: guillaume.chapuy@liafa.univ-paris-diderot.fr

Sylvie Corteel
Affiliation: LIAFA, CNRS et Université Paris Diderot, Case 7014, F-75205 Paris Cedex 13, France
Email: corteel@liafa.univ-paris-diderot.fr

DOI: https://doi.org/10.1090/tran/7169
Received by editor(s): July 16, 2014
Received by editor(s) in revised form: July 29, 2016
Published electronically: April 24, 2017
Additional Notes: All authors were partially funded by the Ville de Paris, projet Émergences Combinatoire à Paris
The first and second authors acknowledge partial support from Agence Nationale de la Recherche, grant number ANR 12-JS02-001-01 (Cartaplus)
The third author acknowledges support from Agence Nationale de la Recherche, grant number ANR-08-JCJC-0011 (ICOMB)
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society