Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On the Sato-Tate conjecture for non-generic abelian surfaces

Author: Christian Johansson; with an appendix by Francesc Fité
Journal: Trans. Amer. Math. Soc. 369 (2017), 6303-6325
MSC (2010): Primary 11F80, 11G10
Published electronically: January 9, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove many non-generic cases of the Sato-Tate conjecture for abelian surfaces as formulated by Fité, Kedlaya, Rotger and Sutherland, using the potential automorphy theorems of Barnet-Lamb, Gee, Geraghty and Taylor.

References [Enhancements On Off] (What's this?)

  • [AC] James Arthur and Laurent Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Mathematics Studies, vol. 120, Princeton University Press, Princeton, NJ, 1989. MR 1007299
  • [AT] Emil Artin and John Tate, Class field theory, 2nd ed., Advanced Book Classics, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1990. MR 1043169
  • [BK] Grzegorz Banaszak and Kiran S. Kedlaya, An algebraic Sato-Tate group and Sato-Tate conjecture, Indiana Univ. Math. J. 64 (2015), no. 1, 245-274. MR 3320526,
  • [BLGG] Thomas Barnet-Lamb, Toby Gee, and David Geraghty, The Sato-Tate conjecture for Hilbert modular forms, J. Amer. Math. Soc. 24 (2011), no. 2, 411-469. MR 2748398,
  • [BLGGT] Thomas Barnet-Lamb, Toby Gee, David Geraghty, and Richard Taylor, Potential automorphy and change of weight, Ann. of Math. (2) 179 (2014), no. 2, 501-609. MR 3152941,
  • [BGHT] Tom Barnet-Lamb, David Geraghty, Michael Harris, and Richard Taylor, A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci. 47 (2011), no. 1, 29-98. MR 2827723,
  • [Car04] Gabriel Cardona, $ \mathbb{Q}$-curves and abelian varieties of $ \rm GL_2$-type from dihedral genus 2 curves, Modular curves and abelian varieties, Progr. Math., vol. 224, Birkhäuser, Basel, 2004, pp. 45-52. MR 2058641
  • [CQ07] Gabriel Cardona and Jordi Quer, Curves of genus 2 with group of automorphisms isomorphic to $ D_8$ or $ D_{12}$, Trans. Amer. Math. Soc. 359 (2007), no. 6, 2831-2849 (electronic). MR 2286059,
  • [Far] L. Fargues, Motives and automorphic forms: The (potentially) abelian case, available at
  • [FKRS] Francesc Fité, Kiran S. Kedlaya, Víctor Rotger, and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, Compos. Math. 148 (2012), no. 5, 1390-1442. MR 2982436,
  • [FS] Francesc Fité and Andrew Sutherland, Sato-Tate distributions of twists of $ y^2=x^5-x$ and $ y^2=x^6+1$, preprint, available at
  • [Har] Michael Harris, Potential automorphy of odd-dimensional symmetric powers of elliptic curves and applications, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progr. Math., vol. 270, Birkhäuser Boston, Inc., Boston, MA, 2009, pp. 1-21. MR 2641185,
  • [HSBT] Michael Harris, Nick Shepherd-Barron, and Richard Taylor, A family of Calabi-Yau varieties and potential automorphy, Ann. of Math. (2) 171 (2010), no. 2, 779-813. MR 2630056,
  • [KS08] Kiran S. Kedlaya and Andrew V. Sutherland, Computing $ L$-series of hyperelliptic curves, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 5011, Springer, Berlin, 2008, pp. 312-326. MR 2467855,
  • [NSW] Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2000. MR 1737196
  • [Rib] Kenneth A. Ribet, Abelian varieties over $ {\bf Q}$ and modular forms, Algebra and topology 1992 (Taejŏn), Korea Adv. Inst. Sci. Tech., Taejŏn, 1992, pp. 53-79. MR 1212980
  • [Ser1] Jean-Pierre Serre, Abelian $ l$-adic representations and elliptic curves, McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0263823
  • [Ser2] Jean-Pierre Serre, Lectures on $ N_X (p)$, Chapman & Hall/CRC Research Notes in Mathematics, vol. 11, CRC Press, Boca Raton, FL, 2012. MR 2920749
  • [Tat] J. Tate, Number theoretic background, Automorphic forms, representations and $ L$-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977) Proc. Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 3-26. MR 546607
  • [TTV91] Walter Tautz, Jaap Top, and Alain Verberkmoes, Explicit hyperelliptic curves with real multiplication and permutation polynomials, Canad. J. Math. 43 (1991), no. 5, 1055-1064. MR 1138583,
  • [Tay] Richard Taylor, Remarks on a conjecture of Fontaine and Mazur, J. Inst. Math. Jussieu 1 (2002), no. 1, 125-143. MR 1954941,
  • [Wei] André Weil, Sur la théorie du corps de classes, J. Math. Soc. Japan 3 (1951), 1-35 (French). MR 0044569

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11F80, 11G10

Retrieve articles in all journals with MSC (2010): 11F80, 11G10

Additional Information

Christian Johansson
Affiliation: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
Address at time of publication: Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge CB3 0WB, United Kingdom

Francesc Fité
Affiliation: Universitat Politecnica de Catalunya, Edifici Omega, C/Jordi-Girona 1-3, E-08034 Barcelona, Spain

Received by editor(s): May 19, 2014
Received by editor(s) in revised form: September 22, 2015
Published electronically: January 9, 2017
Article copyright: © Copyright 2017 by Christian Johansson and Francesc Fité

American Mathematical Society