Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the fractional Lane-Emden equation


Authors: Juan Dávila, Louis Dupaigne and Juncheng Wei
Journal: Trans. Amer. Math. Soc. 369 (2017), 6087-6104
MSC (2010): Primary 35B65, 35J25, 35S10
DOI: https://doi.org/10.1090/tran/6872
Published electronically: May 16, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We classify solutions of finite Morse index of the fractional Lane-Emden equation

$\displaystyle (-\Delta )^{s} u = \vert u\vert ^{p-1}u$$\displaystyle \quad \text {in $\mathbb{R}^{n}$.} $


References [Enhancements On Off] (What's this?)

  • [1] Haïm Brezis, Thierry Cazenave, Yvan Martel, and Arthur Ramiandrisoa, Blow up for $ u_t-\Delta u=g(u)$ revisited, Adv. Differential Equations 1 (1996), no. 1, 73-90. MR 1357955
  • [2] Haim Brezis and Juan Luis Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid 10 (1997), no. 2, 443-469. MR 1605678
  • [3] Xavier Cabré and Yannick Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), no. 1, 23-53. MR 3165278, https://doi.org/10.1016/j.anihpc.2013.02.001
  • [4] Luis A. Caffarelli, Basilis Gidas, and Joel Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), no. 3, 271-297. MR 982351, https://doi.org/10.1002/cpa.3160420304
  • [5] Luis Caffarelli and Luis Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260. MR 2354493, https://doi.org/10.1080/03605300600987306
  • [6] L. Caffarelli, J.-M. Roquejoffre, and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math. 63 (2010), no. 9, 1111-1144. MR 2675483, https://doi.org/10.1002/cpa.20331
  • [7] Antonio Capella, Juan Dávila, Louis Dupaigne, and Yannick Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Comm. Partial Differential Equations 36 (2011), no. 8, 1353-1384. MR 2825595, https://doi.org/10.1080/03605302.2011.562954
  • [8] Wenxiong Chen, Congming Li, and Biao Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), no. 3, 330-343. MR 2200258, https://doi.org/10.1002/cpa.20116
  • [9] M. Chipot, M. Chlebík, M. Fila, and I. Shafrir, Existence of positive solutions of a semilinear elliptic equation in $ \mathbf {R}^n_{+}$ with a nonlinear boundary condition, J. Math. Anal. Appl. 223 (1998), no. 2, 429-471. MR 1629293, https://doi.org/10.1006/jmaa.1998.5958
  • [10] J. Dávila, Singular solutions of semi-linear elliptic problems, Handbook of differential equations: stationary partial differential equations. Vol. VI, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2008, pp. 83-176. MR 2569324, https://doi.org/10.1016/S1874-5733(08)80019-8
  • [11] Juan Dávila, Louis Dupaigne, and Alberto Farina, Partial regularity of finite Morse index solutions to the Lane-Emden equation, J. Funct. Anal. 261 (2011), no. 1, 218-232. MR 2785899, https://doi.org/10.1016/j.jfa.2010.12.028
  • [12] Juan Dávila, Louis Dupaigne, and Marcelo Montenegro, The extremal solution of a boundary reaction problem, Commun. Pure Appl. Anal. 7 (2008), no. 4, 795-817. MR 2393398, https://doi.org/10.3934/cpaa.2008.7.795
  • [13] Juan Dávila, Louis Dupaigne, Kelei Wang, and Juncheng Wei, A monotonicity formula and a Liouville-type theorem for a fourth order supercritical problem, Adv. Math. 258 (2014), 240-285. MR 3190428, https://doi.org/10.1016/j.aim.2014.02.034
  • [14] Louis Dupaigne, Stable solutions of elliptic partial differential equations, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 143, Chapman & Hall/CRC, Boca Raton, FL, 2011. MR 2779463
  • [15] Eugene B. Fabes, Carlos E. Kenig, and Raul P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77-116. MR 643158, https://doi.org/10.1080/03605308208820218
  • [16] Mouhamed Moustapha Fall, Semilinear elliptic equations for the fractional Laplacian with Hardy potential, http://arxiv.org/abs/1109.5530.
  • [17] Mouhamed Moustapha Fall and Veronica Felli, Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Comm. Partial Differential Equations 39 (2014), no. 2, 354-397. MR 3169789, https://doi.org/10.1080/03605302.2013.825918
  • [18] Alberto Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $ \mathbb{R}^N$, J. Math. Pures Appl. (9) 87 (2007), no. 5, 537-561 (English, with English and French summaries). MR 2322150, https://doi.org/10.1016/j.matpur.2007.03.001
  • [19] Rupert L. Frank, Enno Lenzmann, and Luis Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math. 69 (2016), no. 9, 1671-1726. MR 3530361, https://doi.org/10.1002/cpa.21591
  • [20] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), no. 8, 883-901. MR 619749, https://doi.org/10.1080/03605308108820196
  • [21] Junichi Harada, Positive solutions to the Laplace equation with nonlinear boundary conditions on the half space, Calc. Var. Partial Differential Equations 50 (2014), no. 1-2, 399-435. MR 3194688, https://doi.org/10.1007/s00526-013-0640-6
  • [22] Ira W. Herbst, Spectral theory of the operator $ (p^{2}+m^{2})^{1/2}-Ze^{2}/r$, Comm. Math. Phys. 53 (1977), no. 3, 285-294. MR 0436854
  • [23] D. D. Joseph and T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1972/73), 241-269. MR 0340701
  • [24] Yan Yan Li, Remark on some conformally invariant integral equations: the method of moving spheres, J. Eur. Math. Soc. (JEMS) 6 (2004), no. 2, 153-180. MR 2055032
  • [25] S. A. Molčanov and E. Ostrovskiĭ, Symmetric stable processes as traces of degenerate diffusion processes., Teor. Verojatnost. i Primenen. 14 (1969), 127-130 (Russian, with English summary). MR 0247668
  • [26] Peter Poláčik, Pavol Quittner, and Philippe Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J. 139 (2007), no. 3, 555-579. MR 2350853, https://doi.org/10.1215/S0012-7094-07-13935-8
  • [27] Xavier Ros-Oton and Joaquim Serra, The Pohozaev identity for the fractional Laplacian, Arch. Ration. Mech. Anal. 213 (2014), no. 2, 587-628. MR 3211861, https://doi.org/10.1007/s00205-014-0740-2
  • [28] Frank Spitzer, Some theorems concerning $ 2$-dimensional Brownian motion, Trans. Amer. Math. Soc. 87 (1958), 187-197. MR 0104296
  • [29] Kelei Wang, Partial regularity of stable solutions to the supercritical equations and its applications, Nonlinear Anal. 75 (2012), no. 13, 5238-5260. MR 2927586, https://doi.org/10.1016/j.na.2012.04.041

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35B65, 35J25, 35S10

Retrieve articles in all journals with MSC (2010): 35B65, 35J25, 35S10


Additional Information

Juan Dávila
Affiliation: Departamento de Ingeniería Matemática and CMM, Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile
Email: jdavila@dim.uchile.cn

Louis Dupaigne
Affiliation: LAMFA, UMR CNRS 7352, Université de Picardie Jules Verne, 33 rue St Leu, 80039, Amiens Cedex, France
Email: louis.dupaigne@math.cnrs.fr

Juncheng Wei
Affiliation: Department of Mathematics, University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada
Email: jcwei@math.ubc.ca

DOI: https://doi.org/10.1090/tran/6872
Received by editor(s): April 14, 2014
Received by editor(s) in revised form: August 20, 2015
Published electronically: May 16, 2017
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society