Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Isotropic measures and stronger forms of the reverse isoperimetric inequality


Authors: Károly J. Böröczky and Daniel Hug
Journal: Trans. Amer. Math. Soc. 369 (2017), 6987-7019
MSC (2010): Primary 52A40; Secondary 52A38, 52B12, 26D15
DOI: https://doi.org/10.1090/tran/6857
Published electronically: March 1, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The reverse isoperimetric inequality, due to Keith Ball, states that if $ K$ is an $ n$-dimensional convex body, then there is an affine image $ \tilde {K}$ of $ K$ for which $ S(\tilde {K})^n/V(\tilde {K})^{n-1}$ is bounded from above by the corresponding expression for a regular $ n$-dimensional simplex, where $ S$ and $ V$ denote the surface area and volume functional. It was shown by Franck Barthe that the upper bound is attained only if $ K$ is a simplex. The discussion of the equality case is based on the equality case in the geometric form of the Brascamp-Lieb inequality. The present paper establishes stability versions of the reverse isoperimetric inequality and of the corresponding inequality for isotropic measures.


References [Enhancements On Off] (What's this?)

  • [1] Keith Ball, Volumes of sections of cubes and related problems, Geometric aspects of functional analysis (1987-88), Lecture Notes in Math., vol. 1376, Springer, Berlin, 1989, pp. 251-260. MR 1008726, https://doi.org/10.1007/BFb0090058
  • [2] Keith Ball, Volume ratios and a reverse isoperimetric inequality, J. London Math. Soc. (2) 44 (1991), no. 2, 351-359. MR 1136445, https://doi.org/10.1112/jlms/s2-44.2.351
  • [3] Keith Ball, Convex geometry and functional analysis, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 161-194. MR 1863692, https://doi.org/10.1016/S1874-5849(01)80006-1
  • [4] Franck Barthe, Inégalités de Brascamp-Lieb et convexité, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 8, 885-888 (French, with English and French summaries). MR 1450443, https://doi.org/10.1016/S0764-4442(97)86963-7
  • [5] Franck Barthe, On a reverse form of the Brascamp-Lieb inequality, Invent. Math. 134 (1998), no. 2, 335-361. MR 1650312, https://doi.org/10.1007/s002220050267
  • [6] F. Barthe, A continuous version of the Brascamp-Lieb inequalities, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1850, Springer, Berlin, 2004, pp. 53-63. MR 2087150, https://doi.org/10.1007/978-3-540-44489-3_6
  • [7] F. Barthe and D. Cordero-Erausquin, Invariances in variance estimates, Proc. Lond. Math. Soc. (3) 106 (2013), no. 1, 33-64. MR 3020738, https://doi.org/10.1112/plms/pds011
  • [8] Franck Barthe, Dario Cordero-Erausquin, Michel Ledoux, and Bernard Maurey, Correlation and Brascamp-Lieb inequalities for Markov semigroups, Int. Math. Res. Not. IMRN 10 (2011), 2177-2216. MR 2806562, https://doi.org/10.1093/imrn/rnq114
  • [9] Felix Behrend, Über einige Affininvarianten konvexer Bereiche, Math. Ann. 113 (1937), no. 1, 713-747 (German). MR 1513119, https://doi.org/10.1007/BF01571662
  • [10] Jonathan Bennett, Anthony Carbery, Michael Christ, and Terence Tao, The Brascamp-Lieb inequalities: finiteness, structure and extremals, Geom. Funct. Anal. 17 (2008), no. 5, 1343-1415. MR 2377493, https://doi.org/10.1007/s00039-007-0619-6
  • [11] Károly J. Böröczky and Martin Henk, Cone-volume measure and stability, Adv. Math. 306 (2017), 24-50. MR 3581297, https://doi.org/10.1016/j.aim.2016.10.005
  • [12] Károly J. Böröczky, Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Affine images of isotropic measures, J. Differential Geom. 99 (2015), no. 3, 407-442. MR 3316972
  • [13] Herm Jan Brascamp and Elliott H. Lieb, Best constants in Young's inequality, its converse, and its generalization to more than three functions, Advances in Math. 20 (1976), no. 2, 151-173. MR 0412366
  • [14] Silouanos Brazitikos, Apostolos Giannopoulos, Petros Valettas, and Beatrice-Helen Vritsiou, Geometry of isotropic convex bodies, Mathematical Surveys and Monographs, vol. 196, American Mathematical Society, Providence, RI, 2014. MR 3185453
  • [15] Eric A. Carlen and Dario Cordero-Erausquin, Subadditivity of the entropy and its relation to Brascamp-Lieb type inequalities, Geom. Funct. Anal. 19 (2009), no. 2, 373-405. MR 2545242, https://doi.org/10.1007/s00039-009-0001-y
  • [16] L. Dümbgen, Bounding standard Gaussian tail probabilities, arxiv:1012.2063v3
  • [17] A. Figalli, F. Maggi, and A. Pratelli, A refined Brunn-Minkowski inequality for convex sets, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 6, 2511-2519. MR 2569906, https://doi.org/10.1016/j.anihpc.2009.07.004
  • [18] A. Figalli, F. Maggi, and A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math. 182 (2010), no. 1, 167-211. MR 2672283, https://doi.org/10.1007/s00222-010-0261-z
  • [19] N. Fusco, F. Maggi, and A. Pratelli, The sharp quantitative isoperimetric inequality, Ann. of Math. (2) 168 (2008), no. 3, 941-980. MR 2456887, https://doi.org/10.4007/annals.2008.168.941
  • [20] A. A. Giannopoulos and V. D. Milman, Extremal problems and isotropic positions of convex bodies, Israel J. Math. 117 (2000), 29-60. MR 1760584, https://doi.org/10.1007/BF02773562
  • [21] Apostolos A. Giannopoulos and Vitali D. Milman, Euclidean structure in finite dimensional normed spaces, Handbook of the geometry of Banach spaces, Vol. I, North-Holland, Amsterdam, 2001, pp. 707-779. MR 1863705, https://doi.org/10.1016/S1874-5849(01)80019-X
  • [22] A. Giannopoulos and M. Papadimitrakis, Isotropic surface area measures, Mathematika 46 (1999), no. 1, 1-13. MR 1750398, https://doi.org/10.1112/S0025579300007518
  • [23] Robert D. Gordon, Values of Mills' ratio of area to bounding ordinate and of the normal probability integral for large values of the argument, Ann. Math. Statistics 12 (1941), 364-366. MR 0005558
  • [24] H. Groemer, Stability properties of geometric inequalities, Amer. Math. Monthly 97 (1990), no. 5, 382-394. MR 1048910, https://doi.org/10.2307/2324388
  • [25] H. Groemer, Stability of geometric inequalities, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 125-150. MR 1242978
  • [26] H. Groemer and R. Schneider, Stability estimates for some geometric inequalities, Bull. London Math. Soc. 23 (1991), no. 1, 67-74. MR 1111537, https://doi.org/10.1112/blms/23.1.67
  • [27] Peter M. Gruber, Convex and discrete geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336, Springer, Berlin, 2007. MR 2335496
  • [28] Peter M. Gruber and Franz E. Schuster, An arithmetic proof of John's ellipsoid theorem, Arch. Math. (Basel) 85 (2005), no. 1, 82-88. MR 2155113, https://doi.org/10.1007/s00013-005-1326-x
  • [29] B. Grünbaum, Partitions of mass-distributions and of convex bodies by hyperplanes., Pacific J. Math. 10 (1960), 1257-1261. MR 0124818
  • [30] Olivier Guédon and Emanuel Milman, Interpolating thin-shell and sharp large-deviation estimates for isotropic log-concave measures, Geom. Funct. Anal. 21 (2011), no. 5, 1043-1068. MR 2846382, https://doi.org/10.1007/s00039-011-0136-5
  • [31] William Gustin, An isoperimetric minimax, Pacific J. Math. 3 (1953), 403-405. MR 0056316
  • [32] Fritz John, Polar correspondence with respect to a convex region, Duke Math. J. 3 (1937), no. 2, 355-369. MR 1545993, https://doi.org/10.1215/S0012-7094-37-00327-2
  • [33] R. Kannan, L. Lovász, and M. Simonovits, Isoperimetric problems for convex bodies and a localization lemma, Discrete Comput. Geom. 13 (1995), no. 3-4, 541-559. MR 1318794, https://doi.org/10.1007/BF02574061
  • [34] Bo'az Klartag, A Berry-Esseen type inequality for convex bodies with an unconditional basis, Probab. Theory Related Fields 145 (2009), no. 1-2, 1-33. MR 2520120, https://doi.org/10.1007/s00440-008-0158-6
  • [35] Bo'az Klartag, On nearly radial marginals of high-dimensional probability measures, J. Eur. Math. Soc. (JEMS) 12 (2010), no. 3, 723-754. MR 2639317, https://doi.org/10.4171/JEMS/213
  • [36] Bo'az Klartag and Emanuel Milman, Centroid bodies and the logarithmic Laplace transform--a unified approach, J. Funct. Anal. 262 (2012), no. 1, 10-34. MR 2852254, https://doi.org/10.1016/j.jfa.2011.09.003
  • [37] Elliott H. Lieb, Gaussian kernels have only Gaussian maximizers, Invent. Math. 102 (1990), no. 1, 179-208. MR 1069246, https://doi.org/10.1007/BF01233426
  • [38] Erwin Lutwak, Selected affine isoperimetric inequalities, Handbook of convex geometry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 151-176. MR 1242979, https://doi.org/10.1016/B978-0-444-89596-7.50010-9
  • [39] Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Volume inequalities for subspaces of $ L_p$, J. Differential Geom. 68 (2004), no. 1, 159-184. MR 2152912
  • [40] Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Volume inequalities for isotropic measures, Amer. J. Math. 129 (2007), no. 6, 1711-1723. MR 2369894, https://doi.org/10.1353/ajm.2007.0038
  • [41] C. M. Petty, Surface area of a convex body under affine transformations, Proc. Amer. Math. Soc. 12 (1961), 824-828. MR 0130618
  • [42] Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Second expanded edition, Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge, 2014. MR 3155183

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 52A40, 52A38, 52B12, 26D15

Retrieve articles in all journals with MSC (2010): 52A40, 52A38, 52B12, 26D15


Additional Information

Károly J. Böröczky
Affiliation: Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, 1053 Budapest, Reáltanoda u. 13-15, Hungary – and – Central European University, Nador utca 9, Budapest, H-1051 Hungary
Email: carlos@renyi.hu

Daniel Hug
Affiliation: Karlsruhe Institute of Technology (KIT), D-76128 Karlsruhe, Germany
Email: daniel.hug@kit.edu

DOI: https://doi.org/10.1090/tran/6857
Keywords: Surface area, volume, isoperimetric inequality, reverse isoperimetric inequality, John ellipsoid, simplex, Brascamp-Lieb inequality, mass transportation, stability result, isotropic measure
Received by editor(s): February 10, 2015
Received by editor(s) in revised form: October 2, 2015
Published electronically: March 1, 2017
Additional Notes: The first author was supported by NKFIH 109789 and 116451
The second author was supported by DFG grants FOR 1548 and HU 1874/4-2
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society