Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Hearts of t-structures in the derived category of a commutative Noetherian ring


Authors: Carlos E. Parra and Manuel Saorín
Journal: Trans. Amer. Math. Soc. 369 (2017), 7789-7827
MSC (2010): Primary 18E30, 13Dxx, 16Exx
DOI: https://doi.org/10.1090/tran/6875
Published electronically: March 1, 2017
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R$ be a commutative Noetherian ring and let $ \mathcal D(R)$ be its (unbounded) derived category. We show that all compactly generated t-structures in $ \mathcal D(R)$ associated to a left bounded filtration by supports of $ \text {Spec}(R)$ have a heart which is a Grothendieck category. Moreover, we identify all compactly generated t-structures in $ \mathcal D(R)$ whose heart is a module category. As geometric consequences for a compactly generated t-structure $ (\mathcal {U},\mathcal {U}^\perp [1])$ in the derived category $ \mathcal {D}(\mathbb{X})$ of an affine Noetherian scheme $ \mathbb{X}$, we get the following: 1) if the sequence $ (\mathcal {U}[-n]\cap \mathcal {D}^{\leq 0}(\mathbb{X}))_{n\in \mathbb{N}}$ is stationary, then the heart $ \mathcal {H}$ is a Grothendieck category; 2) if $ \mathcal {H}$ is a module category, then $ \mathcal {H}$ is always equivalent to $ \text {Qcoh}(\mathbb{Y})$, for some affine subscheme $ \mathbb{Y}\subseteq \mathbb{X}$; 3) if $ \mathbb{X}$ is connected, then: a) when $ \bigcap _{k\in \mathbb{Z}}\mathcal {U}[k]=0$, the heart $ \mathcal {H}$ is a module category if, and only if, the given t-structure is a translation of the canonical t-structure in $ \mathcal {D}(\mathbb{X})$; b) when $ \mathbb{X}$ is irreducible, the heart $ \mathcal {H}$ is a module category if, and only if, there are an affine subscheme $ \mathbb{Y}\subseteq \mathbb{X}$ and an integer $ m$ such that $ \mathcal {U}$ consists of the complexes $ U\in \mathcal {D}(\mathbb{X})$ such that the support of $ H^j(U)$ is in $ \mathbb{X}\setminus \mathbb{Y}$, for all $ j>m$.


References [Enhancements On Off] (What's this?)

  • [AJS] Leovigildo Alonso Tarrío, Ana Jeremías López, and Manuel Saorín, Compactly generated $ t$-structures on the derived category of a Noetherian ring, J. Algebra 324 (2010), no. 3, 313-346. MR 2651339, https://doi.org/10.1016/j.jalgebra.2010.04.023
  • [AJSo] Leovigildo Alonso Tarrío, Ana Jeremías López, and María José Souto Salorio, Construction of $ t$-structures and equivalences of derived categories, Trans. Amer. Math. Soc. 355 (2003), no. 6, 2523-2543 (electronic). MR 1974001, https://doi.org/10.1090/S0002-9947-03-03261-6
  • [AJSo2] Leovigildo Alonso Tarrío, Ana Jeremías López, and María José Souto Salorio, Bousfield localization on formal schemes, J. Algebra 278 (2004), no. 2, 585-610. MR 2071654, https://doi.org/10.1016/j.jalgebra.2004.02.030
  • [AM] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802
  • [B] A. A. Beĭlinson, Coherent sheaves on $ {\bf P}^{n}$ and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68-69 (Russian). MR 509388
  • [BBD] A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5-171 (French). MR 751966
  • [Br] Tom Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2) 166 (2007), no. 2, 317-345. MR 2373143, https://doi.org/10.4007/annals.2007.166.317
  • [CN] Carles Casacuberta and Amnon Neeman, Brown representability does not come for free, Math. Res. Lett. 16 (2009), no. 1, 1-5. MR 2480555, https://doi.org/10.4310/MRL.2009.v16.n1.a1
  • [CG] R. Colpi and E. Gregorio, The heart of a cotilting torsion pair is a Grothendieck category, preprint.
  • [CGM] Riccardo Colpi, Enrico Gregorio, and Francesca Mantese, On the heart of a faithful torsion theory, J. Algebra 307 (2007), no. 2, 841-863. MR 2275375, https://doi.org/10.1016/j.jalgebra.2006.01.020
  • [CMT] Riccardo Colpi, Francesca Mantese, and Alberto Tonolo, When the heart of a faithful torsion pair is a module category, J. Pure Appl. Algebra 215 (2011), no. 12, 2923-2936. MR 2811575, https://doi.org/10.1016/j.jpaa.2011.04.013
  • [G] Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323-448 (French). MR 0232821
  • [GL] Werner Geigle and Helmut Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991), no. 2, 273-343. MR 1140607, https://doi.org/10.1016/0021-8693(91)90107-J
  • [GT] Rüdiger Göbel and Jan Trlifaj, Approximations and endomorphism algebras of modules, de Gruyter Expositions in Mathematics, vol. 41, Walter de Gruyter GmbH & Co. KG, Berlin, 2006. MR 2251271
  • [GKR] A. L. Gorodentsev, S. A. Kuleshov, and A. N. Rudakov, $ t$-stabilities and $ t$-structures on triangulated categories, Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004), no. 4, 117-150 (Russian, with Russian summary); English transl., Izv. Math. 68 (2004), no. 4, 749-781. MR 2084563, https://doi.org/10.1070/IM2004v068n04ABEH000497
  • [HRS] Dieter Happel, Idun Reiten, and Sverre O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575, viii+ 88. MR 1327209, https://doi.org/10.1090/memo/0575
  • [H] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
  • [HKM] Mitsuo Hoshino, Yoshiaki Kato, and Jun-Ichi Miyachi, On $ t$-structures and torsion theories induced by compact objects, J. Pure Appl. Algebra 167 (2002), no. 1, 15-35. MR 1868115, https://doi.org/10.1016/S0022-4049(01)00012-3
  • [J] Ana Jeremías López, El grupo fundamental relativo. Teoría de Galois y localización, Álxebra [Algebra], vol. 56, Universidad de Santiago de Compostela, Departamento de Álgebra, Santiago de Compostela, 1991 (Spanish). MR 1105326
  • [KN] Bernhard Keller and Pedro Nicolás, Weight structures and simple dg modules for positive dg algebras, Int. Math. Res. Not. IMRN 5 (2013), 1028-1078. MR 3031826
  • [Ku] Ernst Kunz, Introduction to commutative algebra and algebraic geometry, Birkhäuser Boston, Inc., Boston, MA, 1985. Translated from the German by Michael Ackerman; With a preface by David Mumford. MR 789602
  • [L] Daniel Lazard, Autour de la platitude, Bull. Soc. Math. France 97 (1969), 81-128 (French). MR 0254100
  • [MT] Francesca Mantese and Alberto Tonolo, On the heart associated with a torsion pair, Topology Appl. 159 (2012), no. 9, 2483-2489. MR 2921836, https://doi.org/10.1016/j.topol.2011.08.032
  • [M] Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
  • [NS] Pedro Nicolás and Manuel Saorín, Parametrizing recollement data for triangulated categories, J. Algebra 322 (2009), no. 4, 1220-1250. MR 2537682, https://doi.org/10.1016/j.jalgebra.2009.04.035
  • [P] Bodo Pareigis, Categories and functors, Translated from the German. Pure and Applied Mathematics, Vol. 39, Academic Press, New York-London, 1970. MR 0265428
  • [PS] Carlos E. Parra and Manuel Saorín, Direct limits in the heart of a t-structure: the case of a torsion pair, J. Pure Appl. Algebra 219 (2015), no. 9, 4117-4143. MR 3336001, https://doi.org/10.1016/j.jpaa.2015.02.011
  • [PS2] Carlos E. Parra and Manuel Saorín, On hearts which are module categories, J. Math. Soc. Japan 68 (2016), no. 4, 1421-1460. MR 3564438, https://doi.org/10.2969/jmsj/06841421
  • [Po] N. Popescu, Abelian categories with applications to rings and modules, Academic Press, London-New York, 1973. London Mathematical Society Monographs, No. 3. MR 0340375
  • [ST] María José Souto Salorio and Sonia Trepode, T-structures on the bounded derived category of the Kronecker algebra, Appl. Categ. Structures 20 (2012), no. 5, 513-529. MR 2957314, https://doi.org/10.1007/s10485-011-9248-1
  • [St] Don Stanley, Invariants of $ t$-structures and classification of nullity classes, Adv. Math. 224 (2010), no. 6, 2662-2689. MR 2652219, https://doi.org/10.1016/j.aim.2010.02.016
  • [S] Bo Stenström, Rings of quotients, Springer-Verlag, New York-Heidelberg, 1975. Die Grundlehren der Mathematischen Wissenschaften, Band 217; An introduction to methods of ring theory. MR 0389953
  • [V] A. Verschoren, Relative invariants of sheaves, Monographs and Textbooks in Pure and Applied Mathematics, vol. 104, Marcel Dekker, Inc., New York, 1987. MR 862796

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 18E30, 13Dxx, 16Exx

Retrieve articles in all journals with MSC (2010): 18E30, 13Dxx, 16Exx


Additional Information

Carlos E. Parra
Affiliation: Departamento de Matemáticas, Universidad de los Andes, 5101 Mérida, Venezuela
Email: carlosparra@ula.ve

Manuel Saorín
Affiliation: Departamento de Matemáticas, Universidad de Murcia, Aptdo. 4021, 30100 Espinardo, Murcia, Spain
Email: msaorinc@um.es

DOI: https://doi.org/10.1090/tran/6875
Received by editor(s): July 1, 2014
Received by editor(s) in revised form: September 8, 2015, and November 19, 2015
Published electronically: March 1, 2017
Additional Notes: The first author was supported by a grant from the Universidad de los Andes (Venezuela). The second author was supported by research projects from the Spanish Ministerio de Economía y Competitividad (MTM2013-46837-P) and from the Fundación ‘Séneca’ of Murcia, with a part of FEDER funds. The authors thank these institutions for their help.
Article copyright: © Copyright 2017 American Mathematical Society

American Mathematical Society