Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The minimal model of the complement of an arrangement of hyperplanes
HTML articles powered by AMS MathViewer

by Michael Falk PDF
Trans. Amer. Math. Soc. 309 (1988), 543-556 Request permission

Abstract:

In this paper the methods of rational homotopy theory are applied to a family of examples from singularity theory. Let ${\mathbf {A}}$ be a finite collection of hyperplanes in ${{\mathbf {C}}^l}$, and let $M = {{\mathbf {C}}^l} - \bigcup \nolimits _{H \in {\mathbf {A}}} H$. We say ${\mathbf {A}}$ is a rational $K(\pi , 1)$ arrangement if the rational completion of $M$ is aspherical. For these arrangements an identity (the LCS formula) is established relating the lower central series of ${\pi _1}(M)$ to the cohomology of $M$. This identity was established by group-theoretic means for the class of fiber-type arrangements in previous work. We reproduce this result by showing that the class of rational $K(\pi , 1)$ arrangements contains all fiber-type arrangements. This class includes the reflection arrangements of types ${A_l}$ and ${B_l}$. There is much interest in arrangements for which $M$ is a $K(\pi , 1)$ space. The methods developed here do not apply directly because $M$ is rarely a nilpotent space. We give examples of $K(\pi , 1)$ arrangements which are not rational $K(\pi , 1)$ for which the LCS formula fails, and $K(\pi , 1)$ arrangements which are not rational $K(\pi , 1)$ where the LCS formula holds. It remains an open question whether rational $K(\pi , 1)$ arrangements are necessarily $K(\pi , 1)$.
References
  • A. K. Bousfield and V. K. A. M. Gugenheim, On $\textrm {PL}$ de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8 (1976), no. 179, ix+94. MR 425956, DOI 10.1090/memo/0179
  • A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573
  • Egbert Brieskorn, Sur les groupes de tresses [d’après V. I. Arnol′d], Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401, Lecture Notes in Math., Vol. 317, Springer, Berlin, 1973, pp. 21–44 (French). MR 0422674
  • Pierre Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273–302 (French). MR 422673, DOI 10.1007/BF01406236
  • Michael Falk and Richard Randell, On the homotopy theory of arrangements, Complex analytic singularities, Adv. Stud. Pure Math., vol. 8, North-Holland, Amsterdam, 1987, pp. 101–124. MR 894288, DOI 10.2969/aspm/00810101
  • Toshitake Kohno, Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math. 82 (1985), no. 1, 57–75 (French). MR 808109, DOI 10.1007/BF01394779
  • Phillip A. Griffiths and John W. Morgan, Rational homotopy theory and differential forms, Progress in Mathematics, vol. 16, Birkhäuser, Boston, Mass., 1981. MR 641551
  • T. Kohno, Poincaré series of the Malcev completion of generalized pure braid groups, preprint. —, Rational $K(\pi ,\,1)$ arrangements satisfy the $LCS$ formula, preprint. —, Séries de Poincaré-Koszul associée aux groupes de tresse pure, Invent. Math. 82 (1985), 57-75. W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory, Wiley, New York, 1966.
  • John W. Morgan, The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 48 (1978), 137–204. MR 516917
  • Peter Orlik and Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), no. 2, 167–189. MR 558866, DOI 10.1007/BF01392549
  • Dennis Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. 47 (1977), 269–331 (1978). MR 646078
  • Hiroaki Terao, Free arrangements of hyperplanes and unitary reflection groups, Proc. Japan Acad. Ser. A Math. Sci. 56 (1980), no. 8, 389–392. MR 596011
  • Hiroaki Terao, Modular elements of lattices and topological fibration, Adv. in Math. 62 (1986), no. 2, 135–154. MR 865835, DOI 10.1016/0001-8708(86)90097-6
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 32C40
  • Retrieve articles in all journals with MSC: 32C40
Additional Information
  • © Copyright 1988 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 309 (1988), 543-556
  • MSC: Primary 32C40
  • DOI: https://doi.org/10.1090/S0002-9947-1988-0929668-7
  • MathSciNet review: 929668