Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Embeddings of circular orbits and the distribution of fractional parts
HTML articles powered by AMS MathViewer

by V. G. Zhuravlev
Translated by: N. V. Tsilevich
St. Petersburg Math. J. 26 (2015), 881-909
DOI: https://doi.org/10.1090/spmj/1365
Published electronically: September 21, 2015

Abstract:

Let $r_{n,\alpha } (i,t)$ be the number of points of the sequence $\{t\}, \{\alpha +t\}, \{2\alpha +t\},\dots$ that fall into the semiopen interval $[0, \{n\alpha \})$, where $\{x\}$ is the fractional part of $x$, $n$ is an arbitrary integer, and $t$ is any fixed number. Denote by $\delta _{n,\alpha }(i,t)= i \{n \alpha \} - r_{n,\alpha } (i,t)$ the deviation of the expected number $i \{n \alpha \}$ of hits of the above sequence in the semiopen interval $[0, \{n\alpha \})$ of length $\{n \alpha \}$ from the observed number of hits $r_{n,\alpha } (i,t)$. E. Hecke proved the following theorem: the deviations $\delta _{n,\alpha }(i,t)$ satisfy the inequality $|\delta _{n,\alpha }(i,t)|\le |n|$ for all $t\in [0,1)$ and $i=0,1,2,\dots$. In this paper, conditions on the parameters $n$ and $\alpha$ are found under which $\delta _{n,\alpha }(i, t)$ can be bounded as $|\delta _{n,\alpha }(i, t)|< c_{\alpha }$ for a constant $c_{\alpha }>0$ depending on $\alpha$, as $|n| \rightarrow \infty$ and $n$ ranges over an infinite subset of integers. In the case where $n$ is taken to be equal to the denominators of the convergents $Q_m$ to $\alpha$, the smallest values of the constants $c_{\alpha }$ are computed. The proofs involve a new method based on embeddings of circular orbits into partitions of the unit circle.
References
  • Tom C. Brown and Peter Jau-Shyong Shiue, Sums of fractional parts of integer multiples of an irrational, J. Number Theory 50 (1995), no. 2, 181–192. MR 1316813, DOI 10.1006/jnth.1995.1012
  • E. Hecke, Uber analytische Funktionen und die Verteilung von Zahlen mod. eins, Abh. Math. Sem. Hamburg. Univ. 1 (1921), 54–76.
  • Alexander Ostrowski, Bemerkungen zur Theorie der Diophantischen Approximationen, Abh. Math. Sem. Univ. Hamburg 1 (1922), no. 1, 77–98 (German). MR 3069389, DOI 10.1007/BF02940581
  • Christopher Pinner, On sums of fractional parts $\{n\alpha +\gamma \}$, J. Number Theory 65 (1997), no. 1, 48–73. MR 1458202, DOI 10.1006/jnth.1997.2080
  • E. Zeckendorf, Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41 (1972), 179–182 (French, with English summary). MR 308032
  • A. A. Abrosimova and V. G. Zhuravlev, A two-dimensional generalization of Hecke’s theorem and balanced words, Algebra and Number Theory: Modern Problems and Applications, Saratov Univ., Saratov, 2011, pp. 3–4. (Russian)
  • V. G. Zhuravlev, Rauzy tilings and bounded remainder sets on a torus, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 322 (2005), no. Trudy po Teorii Chisel, 83–106, 253 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 137 (2006), no. 2, 4658–4672. MR 2138453, DOI 10.1007/s10958-006-0262-z
  • V. G. Zhuravlev, One-dimensional Fibonacci tilings, Izv. Ross. Akad. Nauk Ser. Mat. 71 (2007), no. 2, 89–122 (Russian, with Russian summary); English transl., Izv. Math. 71 (2007), no. 2, 307–340. MR 2316983, DOI 10.1070/IM2007v071n02ABEH002358
  • V. G. Zhuravlev, Exchanged toric developments and bounded remainder sets, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 392 (2011), no. Analiticheskaya Teoriya Chisel i Teoriya Funktsiĭ. 26, 95–145, 219–220 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 184 (2012), no. 6, 716–745. MR 2870222, DOI 10.1007/s10958-012-0894-0
  • V. G. Zhuravlev, A multidimensional Hecke theorem on the distribution of fractional parts, Algebra i Analiz 24 (2012), no. 1, 95–130 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 24 (2013), no. 1, 71–97. MR 3013295, DOI 10.1090/S1061-0022-2012-01232-X
  • V. G. Zhuravlev, Moduli of toric tilings into bounded remainder sets and balanced words, Algebra i Analiz 24 (2012), no. 4, 97–136 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 24 (2013), no. 4, 601–629. MR 3088009, DOI 10.1090/S1061-0022-2013-01256-8
  • —, Bounded remainder polyhedra, Sovrem. Probl. Mat. 16 (2012), 82–102; English transl., Proc. Steklov Inst. Math. 280 (2013), no. 2, 71–90.
  • V. V. Krasil′shchikov, A. V. Shutov, and V. G. Zhuravlev, One-dimensional quasiperiodic tilings that admit enclosure of progressions, Izv. Vyssh. Uchebn. Zaved. Mat. 7 (2009), 3–9 (Russian, with English and Russian summaries); English transl., Russian Math. (Iz. VUZ) 53 (2009), no. 7, 1–6. MR 2584200, DOI 10.3103/S1066369X09070019
  • N. N. Manuĭlov, The number of hits of points of the sequence $\{i\tau _g\}$ in a half-interval, Chebyshevskiĭ Sb. 5 (2004), no. 3(11), 72–81 (Russian). MR 2280022
  • A. V. Shutov, Optimum estimates in the problem of the distribution of fractional parts of the sequence $n\alpha$, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser. 2007, no. 7, 168–175. (Russian)
  • A. V. Shutov, Number systems and bounded remainder sets, Chebyshevskiĭ Sb. 7 (2006), no. 3(19), 110–128 (Russian). MR 2378195
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 11K06
  • Retrieve articles in all journals with MSC (2010): 11K06
Bibliographic Information
  • V. G. Zhuravlev
  • Affiliation: Vladimir State University, pr. Stroiteley 11, Vladimir 600024, Russia
  • Email: vzhuravlev@mail.ru
  • Received by editor(s): June 25, 2013
  • Published electronically: September 21, 2015
  • Additional Notes: Supported by RFBR (grant no. 4-01-00360)
  • © Copyright 2015 American Mathematical Society
  • Journal: St. Petersburg Math. J. 26 (2015), 881-909
  • MSC (2010): Primary 11K06
  • DOI: https://doi.org/10.1090/spmj/1365
  • MathSciNet review: 3443255