Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2020 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

A new look at the decomposition of unipotents and the normal structure of Chevalley groups
HTML articles powered by AMS MathViewer

by A. Stepanov
Translated by: the author
St. Petersburg Math. J. 28 (2017), 411-419
DOI: https://doi.org/10.1090/spmj/1456
Published electronically: March 29, 2017

Abstract:

The paper continues a series of publications on the decomposition of unipotents in a Chevalley group $\mathrm {G} (\Phi ,R)$ over a commutative ring $R$ with a reduced irreducible root system $\Phi$. Fix $h\in \mathrm {G} (\Phi ,R)$. An element $a\in \mathrm {G} (\Phi ,R)$ is said to be “good” if it belongs to the unipotent radical of a parabolic subgroup and the conjugate to $a$ by $h$ lies in another parabolic subgroup (all parabolic subgroups are assumed to contain the same split maximal torus). The “decomposition of unipotents” method is a representation of an elementary root unipotent element as a product of “good” elements. Decomposition of unipotents implies a simple proof of normality for the elementary subgroup and the standardness for the normal structure of $\mathrm {G} (\Phi ,R)$. However, such a decomposition is available not for all root systems. In the paper, it is shown that to prove the standardness of the normal structure it suffices to find one “good” element for the generic element of the group scheme $\mathrm {G}(\Phi , \cdot)$. Also, some “good” elements are constructed. The question as to whether and when good elements span the elementary subgroup will be considered in a subsequent article of the series.
References
  • Z. I. Borevich and N. A. Vavilov, Arrangement of subgroups in the general linear group over a commutative ring, Trudy Mat. Inst. Steklov. 165 (1984), 24–42 (Russian). Algebraic geometry and its applications. MR 752930
  • N. A. Vavilov, On subgroups of a symplectic group containing a subsystem subgroup, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 349 (2007), no. Voprosy Teorii Predstavleniĭ Algebr i Grupp. 16, 5–29, 242 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 151 (2008), no. 3, 2937–2948. MR 2742852, DOI 10.1007/s10958-008-9020-8
  • N. A. Vavilov and A. V. Stepanov, Overgroups of semisimple groups, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser. 3 (2008), 51–95 (Russian, with English and Russian summaries). MR 2473730
  • L. N. Vaseršteĭn, On the stabilization of the general linear group over a ring, Math. USSR-Sb. 8 (1969), 383–400. MR 0267009
  • I. Z. Golubčik, The full linear group over an associative ring, Uspehi Mat. Nauk 28 (1973), no. 3(171), 179–180 (Russian). MR 0396783
  • Eiichi Abe, Normal subgroups of Chevalley groups over commutative rings, Algebraic $K$-theory and algebraic number theory (Honolulu, HI, 1987) Contemp. Math., vol. 83, Amer. Math. Soc., Providence, RI, 1989, pp. 1–17. MR 991973, DOI 10.1090/conm/083/991973
  • Eiichi Abe and Kazuo Suzuki, On normal subgroups of Chevalley groups over commutative rings, Tohoku Math. J. (2) 28 (1976), no. 2, 185–198. MR 439947, DOI 10.2748/tmj/1178240833
  • Armand Borel and Jacques Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–150 (French). MR 207712
  • Schémas en groupes. III: Structure des schémas en groupes réductifs, Lecture Notes in Mathematics, Vol. 153, Springer-Verlag, Berlin-New York, 1970 (French). Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3); Dirigé par M. Demazure et A. Grothendieck. MR 0274460
  • Jens Carsten Jantzen, Representations of algebraic groups, 2nd ed., Mathematical Surveys and Monographs, vol. 107, American Mathematical Society, Providence, RI, 2003. MR 2015057
  • Michael R. Stein, Generators, relations and coverings of Chevalley groups over commutative rings, Amer. J. Math. 93 (1971), 965–1004. MR 322073, DOI 10.2307/2373742
  • Alexei Stepanov, Elementary calculus in Chevalley groups over rings, J. Prime Res. Math. 9 (2013), 79–95. MR 3186522
  • Alexei Stepanov, Structure of Chevalley groups over rings via universal localization, J. Algebra 450 (2016), 522–548. MR 3449702, DOI 10.1016/j.jalgebra.2015.11.031
  • Alexei Stepanov and Nikolai Vavilov, Decomposition of transvections: a theme with variations, $K$-Theory 19 (2000), no. 2, 109–153. MR 1740757, DOI 10.1023/A:1007853629389
  • Leonid N. Vaserstein, On normal subgroups of Chevalley groups over commutative rings, Tohoku Math. J. (2) 38 (1986), no. 2, 219–230. MR 843808, DOI 10.2748/tmj/1178228489
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2010): 20G35
  • Retrieve articles in all journals with MSC (2010): 20G35
Bibliographic Information
  • A. Stepanov
  • Affiliation: Department of Mathematics and Mechanics, St. Petersburg State University; St. Petersburg State Electrotechnical University “LETI”
  • Email: stepanov239@gmail.com
  • Received by editor(s): December 15, 2015
  • Published electronically: March 29, 2017
  • Additional Notes: Supported by RSF, (grant no. 14-11-00297).
  • © Copyright 2017 American Mathematical Society
  • Journal: St. Petersburg Math. J. 28 (2017), 411-419
  • MSC (2010): Primary 20G35
  • DOI: https://doi.org/10.1090/spmj/1456
  • MathSciNet review: 3604292