Solution of the Dirichlet problem for equations not necessarily strongly elliptic

Author:
Martin Schechter

Journal:
Bull. Amer. Math. Soc. **64** (1958), 371-372

DOI:
https://doi.org/10.1090/S0002-9904-1958-10239-6

MathSciNet review:
0171071

Full-text PDF

References | Additional Information

**1.**F. E. Browder,*On the regularity properties of solutions of elliptic differential equations*, Comm. Pure Appl. Math. vol. 9 (1956) pp. 351-361. MR**90740****2.**Lars Gårding,*Dirichlet's problem for linear elliptic partial differential equations*, Math. Scand. vol. 1 (1953) pp. 55-72. MR**64979****3.**P. D. Lax and A. N. Milgram,*Parabolic equations*, Annals of Mathematical Studies, no. 33, 1954, pp. 167-190. MR**67317****4.**Louis Nirenberg,*Remarks on strongly elliptic partial differential equations*, Comm. Pure Appl. Math. vol. 8 (1955) pp. 648-674. MR**75415****5.**Martin Schechter,*On estimating elliptic partial differential operators in the L*_{2}*norm*, Amer. J. Math. vol. 79 (1957) pp. 431-443. MR**88648****6.**Martin Schechter,*Integral inequalities for partial differential operators and functions satisfying general boundary conditions*, Comm. Pure Appl. Math. to appear in 1959. MR**141879**

Additional Information

DOI:
https://doi.org/10.1090/S0002-9904-1958-10239-6