Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Cross sectionally simple spheres


Author: W. T. Eaton
Journal: Bull. Amer. Math. Soc. 75 (1969), 375-378
DOI: https://doi.org/10.1090/S0002-9904-1969-12180-4
MathSciNet review: 0239600
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6-8.
  • 2. R. H. Bing, Approximating surfaces from the side, Ann of Math. (2) 77 (1963), 145-192. MR 150744
  • 3. R. H. Bing, A surface is tame if its complement is1-ULC, Trans. Amer. Math. Soc. 101 (1961), 294-305. MR 131265
  • 4. R. H. Bing, Conditions under which a surface in E3 is tame, Fund. Math. 47 (1959), 105-139. MR 107229
  • 5. R. H. Bing, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33-45. MR 160194
  • 6. R. H. Bing, Spheres in E3, Amer. Math. Monthly 71 (1964), 353-364. MR 165507
  • 7. C. E. Burgess, Characterizations of tame surfaces in E3, Trans. Amer. Math. Soc. 114 (1965), 80-97. MR 176456
  • 8. C. D. Papakyriakojoulos, On Dehn's Lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1-26. MR 90053


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1969-12180-4

American Mathematical Society