IMPORTANT NOTICE

The AMS website will be down for maintenance on May 23 between 6:00am - 8:00am EDT. For questions please contact AMS Customer Service at cust-serv@ams.org or (800) 321-4267 (U.S. & Canada), (401) 455-4000 (Worldwide).

 

Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Asymptotic nonuniqueness of the Navier-Stokes equations in kinetic theory


Authors: Richard S. Ellis and Mark A. Pinsky
Journal: Bull. Amer. Math. Soc. 80 (1974), 1160-1164
MSC (1970): Primary 82A40, 76D30; Secondary 15A27, 76Q05, 45M05
DOI: https://doi.org/10.1090/S0002-9904-1974-13656-6
MathSciNet review: 0609539
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. R. Ellis and M. Pinsky, Limit theorems for model Boltzmann equations with several conserved quantities, Indiana Univ. Math. J. 23 (1973), 287-307. MR 47 #8058. MR 319514
  • 2. R. Ellis and M. Pinsky, Asymptotic equivalence of the linear Navier-Stokes and heat equations in one dimension, J. Differential Equations (to appear). MR 609546
  • 3. R. Ellis and M. Pinsky, Projection of the Navier-Stokes equations upon the Euler equations, J. Math. Pures Appl. (to appear). MR 609545
  • 4. R. Ellis and M. Pinsky, The first and second fluid approximations to the Boltzmann equation, J. Math. Pures Appl. (to appear).
  • 5. J. D. Foch and G. W. Ford, The dispersion of sound in monoatomic cases, Studies in Statistical Mechanics, vol. 5, North-Holland, Amsterdam, 1970.
  • 6. H. Grad, Asymptotic theory of the Boltzmann equation. II, Rarefied Gas Dynamics (Proc. Third Internat. Sympos., Palais de l'UNESCO, Paris, 1962), vol. 1, Academic Press, New York, 1963, pp. 26-59. MR 27 #6577. MR 156656
  • 7. H. Grad, Asymptotic equivalence of the Navier-Stokes and non-linear Boltzmann equations, Proc. Sympos. Appl. Math., vol. 17, Amer. Math. Soc. Providence, R. I., 1965, pp. 154-183. MR 32 #1979. MR 184507
  • 8. H. Grad, Solution of the Boltzmann equation in an unbounded domain, Comm. Pure Appl. Math. 18 (1965), 345-354. MR 32 #8913. MR 191508
  • 9. T. Kato, Perturbation theory for linear operators, Die Grundlehren der math. Wissenschaften, Band 132, Springer-Verlag, New York, 1966. MR 34 #3324. MR 203473
  • 10. J. A. McLennan, Convergence of the Chapman-Enskog expansion for the linearized Boltzmann equation, Phys. Fluids 8 (1965), 1580-1584. MR 33 #6948. MR 198794
  • 11. B. Nicolaenko, Dispersion laws for plane wave propagation, The Boltzmann Equation (ed. by F. A. Grünbaum), Courant Institute of Mathematical Sciences, New York, 1971, pp. 125-173.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1970): 82A40, 76D30, 15A27, 76Q05, 45M05

Retrieve articles in all journals with MSC (1970): 82A40, 76D30, 15A27, 76Q05, 45M05


Additional Information

DOI: https://doi.org/10.1090/S0002-9904-1974-13656-6

American Mathematical Society