Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 

 

Maximum entropy and the moment problem


Author: H. J. Landau
Journal: Bull. Amer. Math. Soc. 16 (1987), 47-77
MSC (1985): Primary 42A70; Secondary 42A05, 62M15, 94A17, 60G25
MathSciNet review: 866018
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. N. I. Akhiezer, The classical moment problem, Hafner, New York, 1965.
  • 2. L. Breiman, Probability and stochastic processes, Houghton-Mifflin, Boston, 1969.
  • 3. A. M. Bruckstein and T. Kailath, Inverse scattering for discrete transmission-line models, SIAM Rev. 29 (1987), no. 3, 359–389. MR 902563, 10.1137/1029075
  • 4. Alfred M. Bruckstein, Bernard C. Levy, and Thomas Kailath, Differential methods in inverse scattering, SIAM J. Appl. Math. 45 (1985), no. 2, 312–335. MR 781110, 10.1137/0145017
  • 5. A. Bultheel, Error analysis of incoming and outgoing schemes for the trigonometric moment problem, Padé approximation and its applications, Amsterdam 1980 (Amsterdam, 1980), Lecture Notes in Math., vol. 888, Springer, Berlin-New York, 1981, pp. 100–109. MR 649088
  • 6. J. P. Burg, Maximum entropy spectral analysis, Proc. 37th Meet. Soc. Exploration Geophysicists, 1967; reprinted in Modern Spectrum Analysis (D. G. Childers, ed.), IEEE Press, New York, 1978, pp. 34-39.
  • 7. J. P. Burg, A new analysis technique for time series data, NATO Adv. Study Inst, on Signal Processing, Enschede, Netherlands, 1968; reprinted in Modern Spectrum Analysis (D. G. Childers, ed.), IEEE Press, New York, 1978, 42-48.
  • 8. J. P. Burg, The relationship between maximum entropy spectra and maximum likelihood spectra, Geophysics, 1972; reprinted in Modern Spectrum Analysis (D. G. Childers, ed.), IEEE Press, New, York, 1978, pp. 132-133.
  • 9. J. P. Burg, Maximum entropy spectral analysis, Ph.D. dissertation, Stanford University, Stanford, California, 1975.
  • 10. D. G. Childers, ed., Modern spectrum analysis, IEEE Press, New York, 1978.
  • 11. B. S. Choi and T. M. Cover, An information-theoretic proof of Burg's maximum entropy spectrum, Proc. IEEE 72 (1984), 1094-1095.
  • 12. I. Csiszár and G. Tusnády, Information geometry and alternating minimization procedures, Statist. Decisions suppl. 1 (1984), 205–237. Recent results in estimation theory and related topics. MR 785210
  • 13. A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Statist. Soc. Ser. B 39 (1977), no. 1, 1–38. With discussion. MR 0501537
  • 14. Harry Dym and Andrei Iacob, Applications of factorization and Toeplitz operators to inverse problems, Toeplitz centennial (Tel Aviv, 1981) Operator Theory: Adv. Appl., vol. 4, Birkhäuser, Basel-Boston, Mass., 1982, pp. 233–260. MR 669911
  • 15. I. C. Gohberg and I. A. Fel′dman, Convolution equations and projection methods for their solution, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by F. M. Goldware; Translations of Mathematical Monographs, Vol. 41. MR 0355675
  • 16. B. Gopinath and M. M. Sondhi, Inversion of the telegraph equation and the synthesis of nonuniform lines, Proc. IEEE 59 (1971), 383–392. MR 0339916
  • 17. Ulf Grenander and Gabor Szegö, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley-Los Angeles, 1958. MR 0094840
  • 18. Simon Haykin (ed.), Nonlinear methods of spectral analysis, Topics in Applied Physics, vol. 34, Springer-Verlag, Berlin-New York, 1979. MR 601216
  • 19. Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. MR 0133008
  • 20. E. T. Jaynes, On the rationale of maximum entropy methods, Proc. IEEE 70 (1982), 939-952.
  • 21. Thomas Kailath, A theorem of I. Schur and its impact on modern signal processing, I. Schur methods in operator theory and signal processing, Oper. Theory Adv. Appl., vol. 18, Birkhäuser, Basel, 1986, pp. 9–30. MR 902601, 10.1007/978-3-0348-5483-2_2
  • 22. T. Kailath, A. Bruckstein, and D. Morgan, Fast matrix factorizations via discrete transmission lines, Linear Algebra Appl. 75 (1986), 1–25. MR 825396, 10.1016/0024-3795(86)90178-3
  • 23. T. Kailath and H. Lev-Ari, On mappings between covariance matrices and physical systems, Linear algebra and its role in systems theory (Brunswick, Maine, 1984), Contemp. Math., vol. 47, Amer. Math. Soc., Providence, RI, 1985, pp. 241–252. MR 828304, 10.1090/conm/047/828304
  • 24. T. Kailath, A. Vieira, and M. Morf, Inverses of Toeplitz operators, innovations, and orthogonal polynomials, SIAM Rev. 20 (1978), no. 1, 106–119. MR 0512865
  • 25. S. J. Karlin and W. J. Studden, Tchebycheff systems: With applications in analysis and statistics, Interscience, New York, 1966.
  • 26. M. G. Kreĭn, The ideas of P. L. Čebyšev and A. A. Markov in the theory of limiting values of integrals and their further development, Uspehi Matem. Nauk (N.S.) 6 (1951), no. 4 (44), 3–120 (Russian). MR 0044591
  • 27. M. G. Kreĭn, Solution of the inverse Sturm-Liouville problem, Doklady Akad. Nauk SSSR (N.S.) 76 (1951), 21–24 (Russian). MR 0039895
  • 28. M. G. Kreĭn, On integral equations generating differential equations of 2nd order, Doklady Akad. Nauk SSSR (N.S.) 97 (1954), 21–24 (Russian). MR 0065016
  • 29. M. G. Kreĭn, Continuous analogues of propositions on polynomials orthogonal on the unit circle, Dokl. Akad. Nauk SSSR (N.S.) 105 (1955), 637–640 (Russian). MR 0080735
  • 30. R. T. Lacoss, Autoregressive and maximum likelihood spectral analysis methods, Aspects of Signal Processing, Part 2, NATO Adv. Study Inst., La Spezia, Italy, 1976 (G. Tacconi, ed.), D. Reidel, Boston, pp. 591-615.
  • 31. H. J. Landau, The inverse problem for the vocal tract and the moment problem, SIAM J. Math. Anal. 14 (1983), no. 5, 1019–1035. MR 711183, 10.1137/0514082
  • 32. Hanoch Lev-Ari and T. Kailath, Lattice filter parametrization and modeling of nonstationary processes, IEEE Trans. Inform. Theory 30 (1984), no. 1, 2–16. MR 730996, 10.1109/TIT.1984.1056849
  • 33. T. L. Marzetta and S. W. Lang, Power spectral density bounds, IEEE Trans. Inf. Theory IT-30 (1984), 117-122.
  • 34. Athanasios Papoulis, Maximum entropy and spectral estimation: a review, IEEE Trans. Acoust. Speech Signal Process. 29 (1981), no. 6, 1176–1186. MR 642904, 10.1109/TASSP.1981.1163713
  • 35. E. A. Robinson, Spectral approach to geophysical inversion by Lorentz, Fourier, and Radon transforms, Proc. IEEE 70 (1982), 1039-1054.
  • 36. Rodney W. Johnson and John E. Shore, Comments on and correction to: “Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy” [IEEE Trans. Inform. Theory 26 (1980), no. 1, 26–37; MR0560389 (80m:94029)], IEEE Trans. Inform. Theory 29 (1983), no. 6, 942–943. MR 733203, 10.1109/TIT.1983.1056747
  • 37. John E. Shore and Rodney W. Johnson, Properties of cross-entropy minimization, IEEE Trans. Inform. Theory 27 (1981), no. 4, 472–482. MR 635526, 10.1109/TIT.1981.1056373
  • 38. Jan M. Van Campenhout and Thomas M. Cover, Maximum entropy and conditional probability, IEEE Trans. Inform. Theory 27 (1981), no. 4, 483–489. MR 635527, 10.1109/TIT.1981.1056374
  • 39. Y. Vardi, L. A. Shepp, and L. Kaufman, A statistical model for positron emission tomography, J. Amer. Statist. Assoc. 80 (1985), no. 389, 8–37. With discussion. MR 786595

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 42A70, 42A05, 62M15, 94A17, 60G25

Retrieve articles in all journals with MSC (1985): 42A70, 42A05, 62M15, 94A17, 60G25


Additional Information

DOI: http://dx.doi.org/10.1090/S0273-0979-1987-15464-4