Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

 
 

 

Arguesian lattices which are not linear


Author: Mark D. Haiman
Journal: Bull. Amer. Math. Soc. 16 (1987), 121-123
MSC (1985): Primary 06C05
DOI: https://doi.org/10.1090/S0273-0979-1987-15483-8
MathSciNet review: 866029
Full-text PDF

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • 1. A. Day, Geometrical applications in modular lattices, Universal Algebra and Lattice Theory: Proceedings, Puebla 1982. Lecture Notes in Math., vol. 1004, Springer-Verlag, Berlin and New York, 1983, pp. 111-141. MR 716178
  • 2. A. Day and D. Pickering, The coordinatization of Arguesian lattices. Trans. Amer. Math. Soc. 278 (1983), 507-522. MR 701508
  • 3. M. Haiman, Proof theory for linear lattices, Advances in Math. 58 (1985), 209-242. MR 815357
  • 4. M. Haiman, Two notes on the Arguesian identity, Algebra Universalis 21 (1985), 167-171. MR 855736
  • 5. Ch. Herrman, S-Verklebte Summen von Verbänden, Math. Z. 130 (1973), 255-274. MR 342449
  • 6. B. Jónsson, On the representation of lattices, Math. Scand. 1 (1953), 193-206. MR 58567
  • 7. B. Jónsson, Representation of modular lattices and of relation algebras, Trans. Amer. Math. Soc. 92 (1959), 449-464. MR 108459
  • 8. D. Pickering, On minimal non-Arguesian lattice varieties, Ph.D. Thesis, Univ. of Hawaii, 1984.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (1985): 06C05

Retrieve articles in all journals with MSC (1985): 06C05


Additional Information

DOI: https://doi.org/10.1090/S0273-0979-1987-15483-8

American Mathematical Society