Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF   This review is available free of charge.
Book Information:

Author: A. V. Skorohod
Title: Stochastic equations for complex systems
Additional book information: Translated by L. F. Boron, D. Reidel Publishing Company, Dordrecht, 1988, xvii + 175 pp., $69.00. ISBN 90-277-2408-3.

References [Enhancements On Off] (What's this?)

  • 1. C. Dellacherie and P. A. Meyer, Probabilities and potential, A, B, North-Holland, Amsterdam, 1975.
  • 2. E. B. Dynkin, Markov processes. I, II, Springer-Verlag, Berlin and New York, 1965.
  • 3. A. Einstein, Investigations on the theory of Brownian movement, 1926. [Reprinted by Dover Publications, 1956.] MR 77443
  • 4. Stewart N. Ethier and Thomas G. Kurtz, Markov processes, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1986. Characterization and convergence. MR 838085
  • 5. Ĭ. Ī. Gīhman and A. V. Skorohod, The theory of stochastic processes. I, Corrected reprint of the first English edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 210, Springer-Verlag, Berlin-New York, 1980. Translated from the Russian by Samuel Kotz. MR 636254
  • 6. Richard A. Holley and Daniel W. Stroock, Generalized Ornstein-Uhlenbeck processes and infinite particle branching Brownian motions, Publ. Res. Inst. Math. Sci. 14 (1978), no. 3, 741–788. MR 527199,
  • 7. Nobuyuki Ikeda and Shinzo Watanabe, Stochastic differential equations and diffusion processes, North-Holland Mathematical Library, vol. 24, North-Holland Publishing Co., Amsterdam-New York; Kodansha, Ltd., Tokyo, 1981. MR 637061
  • 8. M. Kac, Foundations of kinetic theory, Proc. Third Berkeley Sympos. on Math. Stat. and Prob. 3 (1956), 171-197. MR 84985
  • 9. O. E. Lanford, On the derivation of the Boltzmann equation, Astérisque 40 (1976), 117.
  • 10. Thomas M. Liggett, Interacting particle systems, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 276, Springer-Verlag, New York, 1985. MR 776231
  • 11. H. P. McKean, Fluctuations in the kinetic theory of gases, Comm. Pure Appl. Math. 28(1975), 435-455. MR 395662
  • 12. Itaru Mitoma, Generalized Ornstein-Uhlenbeck process having a characteristic operator with polynomial coefficients, Probab. Theory Related Fields 76 (1987), no. 4, 533–555. MR 917678,
  • 13. Tokuzo Shiga and Hiroshi Tanaka, Central limit theorem for a system of Markovian particles with mean field interactions, Z. Wahrsch. Verw. Gebiete 69 (1985), no. 3, 439–459. MR 787607,
  • 14. A. V. Skorohod, Studies in the theory of random processes, Addison-Wesley, Reading, Mass., 1965. [Reprinted by Dover Publications, New York.] MR 185620
  • 15. Daniel W. Stroock and S. R. Srinivasa Varadhan, Multidimensional diffusion processes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 233, Springer-Verlag, Berlin-New York, 1979. MR 532498
  • 16. Alain-Sol Sznitman, Équations de type de Boltzmann, spatialement homogènes, Z. Wahrsch. Verw. Gebiete 66 (1984), no. 4, 559–592 (French, with English summary). MR 753814,
  • 17. A. S. Sznitman, A fluctuation result for nonlinear diffusions, J. Funct. Anal. 56 (1984), 311-336.
  • 18. H. Tanaka, Propagation of chaos for certain purely discontinuous processes with interaction, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 17 (1970), 259-272. MR 282410

Review Information:

Reviewer: Donald Dawson
Journal: Bull. Amer. Math. Soc. 20 (1989), 259-267
American Mathematical Society