Möbius invariance of knot energy

Authors:
Steve Bryson, Michael H. Freedman, Zheng-Xu He and Zhenghan Wang

Journal:
Bull. Amer. Math. Soc. **28** (1993), 99-103

MSC:
Primary 57M25; Secondary 57N45, 58E10

MathSciNet review:
1168514

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A physically natural potential energy for simple closed curves in is shown to be invariant under Möbius transformations. This leads to the rapid resolution of several open problems: round circles are precisely the absolute minima for energy; there is a minimum energy threshold below which knotting cannot occur; minimizers within prime knot types exist and are regular. Finally, the number of knot types with energy less than any constant *M* is estimated.

**[A]**K. Ahara,*Energy of a knot*, screened at Topology Conf., Univ. of Hawaii, August 1990, K. H. Dovermann, organizer.**[FH]**M. H. Freedman and Z.-X. He,*On the 'energy' of knots and unknots*(to appear).**[O1]**Jun O’Hara,*Energy of a knot*, Topology**30**(1991), no. 2, 241–247. MR**1098918**, 10.1016/0040-9383(91)90010-2**[O2]**Jun O’Hara,*Family of energy functionals of knots*, Topology Appl.**48**(1992), no. 2, 147–161. MR**1195506**, 10.1016/0166-8641(92)90023-S**[O3]**Jun O’Hara,*Energy functionals of knots*, Topology Hawaii (Honolulu, HI, 1990) World Sci. Publ., River Edge, NJ, 1992, pp. 201–214. MR**1181493****[S]**C. Ernst and D. W. Sumners,*The growth of the number of prime knots*, Math. Proc. Cambridge Philos. Soc.**102**(1987), no. 2, 303–315. MR**898150**, 10.1017/S0305004100067323**[T]**W. T. Tutte,*A census of planar maps*, Canad. J. Math.**15**(1963), 249–271. MR**0146823****[W]**D. J. A. Welsh,*On the number of knots*, preprint.

Retrieve articles in *Bulletin of the American Mathematical Society*
with MSC:
57M25,
57N45,
58E10

Retrieve articles in all journals with MSC: 57M25, 57N45, 58E10

Additional Information

DOI:
https://doi.org/10.1090/S0273-0979-1993-00348-3

Article copyright:
© Copyright 1993
American Mathematical Society