Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF
Book Information:

Author: V. S. Varadarajan
Title: An introduction to harmonic analysis on semisimple Lie groups
Additional book information: Cambridge Studies in Advanced Math., vol. 16, Cambridge Univ. Press, Cambridge and New York, 1989, x+316 pp., US$69.50. ISBN 0-521-34156-6.

References [Enhancements On Off] (What's this?)

  • 1. Sigurdur Helgason, Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, vol. 80, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 514561
  • 2. Sigurdur Helgason, Groups and geometric analysis, Pure and Applied Mathematics, vol. 113, Academic Press, Inc., Orlando, FL, 1984. Integral geometry, invariant differential operators, and spherical functions. MR 754767
  • 3. James E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York-Berlin, 1972. Graduate Texts in Mathematics, Vol. 9. MR 0323842
  • 4. Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239
  • 5. Serge Lang, 𝑆𝐿₂(𝑅), Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. MR 0430163
  • 6. Mitsuo Sugiura, Unitary representations and harmonic analysis, 2nd ed., North-Holland Mathematical Library, vol. 44, North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1990. An introduction. MR 1049151
  • 7. Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. MR 929683
  • 8. *G. Warner, Harmonic analysis on semisimple Lie groups. I, II, Springer, New York, 1972.
  • 9. V. S. Varadarajan, An introduction to harmonic analysis on semisimple Lie groups, Cambridge Studies in Advanced Mathematics, vol. 16, Cambridge University Press, Cambridge, 1989. MR 1071183
  • 10. V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Graduate Texts in Mathematics, vol. 102, Springer-Verlag, New York, 1984. Reprint of the 1974 edition. MR 746308
  • 11. *D. Vogan, Representations of real reductive groups, Birkhäuser, Basel, 1981.
  • 12. David A. Vogan Jr., Unitary representations of reductive Lie groups, Annals of Mathematics Studies, vol. 118, Princeton University Press, Princeton, NJ, 1987. MR 908078

Review Information:

Reviewer: Joseph A. Wolf
Journal: Bull. Amer. Math. Soc. 28 (1993), 367-370