Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: V. S. Varadarajan
Title: An introduction to harmonic analysis on semisimple Lie groups
Additional book information: Cambridge Studies in Advanced Math., vol. 16, Cambridge Univ. Press, Cambridge and New York, 1989, x+316 pp., US$69.50. ISBN 0-521-34156-6.

References [Enhancements On Off] (What's this?)

  • 1. *S. Helgason, Differential geometry, Lie groups and symmetric spaces, Academic Press, New York, 1978. MR 514561 (80k:53081)
  • 2. *S. Helgason, Groups and geometric analysis, Academic Press, New York, 1984. MR 754767 (86c:22017)
  • 3. *J. Humphreys, Introduction to Lie algebras and representation theory, Springer, New York, 1972. MR 0323842 (48:2197)
  • 4. *A. W. Knapp, Representation of semisimple groups--An overview based on examples, Princeton Univ. Press, Princeton, NJ, 1986. MR 855239 (87j:22022)
  • 5. *S. Lang, $ SL(2;R)$, Addison-Wesley, Reading, MA, 1975; Springer, New York, 1985. MR 0430163 (55:3170)
  • 6. *M. Sugiura, Unitary representations and harmonic analysis--an introduction, second ed., North Holland, Amsterdam, 1990. MR 1049151 (91c:22028)
  • 7. *N. R. Wallach, Real reductive groups. I, Academic Press, New York, 1988. MR 929683 (89i:22029)
  • 8. *G. Warner, Harmonic analysis on semisimple Lie groups. I, II, Springer, New York, 1972.
  • 9. *V. S. Varadarajan, An introduction to harmonic analysis on semisimple Lie groups, Cambridge Univ. Press, Cambridge and New York, 1989. MR 1071183 (91m:22018)
  • 10. *V. S. Varadarajan, Lie groups, Lie algebras and their representations, Prentice-Hall, Engelwood Cliffs, NJ, 1974; Springer, New York, 1984. MR 746308 (85e:22001)
  • 11. *D. Vogan, Representations of real reductive groups, Birkhäuser, Basel, 1981.
  • 12. *D. Vogan, Unitary representations of reductive Lie groups, Princeton Univ. Press, Princeton, NJ, 1987. MR 908078 (89g:22024)

Review Information:

Reviewer: Joseph A. Wolf
Journal: Bull. Amer. Math. Soc. 28 (1993), 367-370
DOI: https://doi.org/10.1090/S0273-0979-1993-00365-3
American Mathematical Society