Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Bulletin of the American Mathematical Society
Bulletin of the American Mathematical Society
ISSN 1088-9485(online) ISSN 0273-0979(print)

 

Genera of algebraic varieties and counting of lattice points


Authors: Sylvain E. Cappell and Julius L. Shaneson
Journal: Bull. Amer. Math. Soc. 30 (1994), 62-69
MSC (2000): Primary 14F45; Secondary 11P21, 14M25, 32S60
MathSciNet review: 1217352
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper announces results on the behavior of some important algebraic and topological invariants -- Euler characteristic, arithmetic genus, and their intersection homology analogues; the signature, etc. -- and their associated characteristic classes, under morphisms of projective algebraic varieties. The formulas obtained relate global invariants to singularities of general complex algebraic (or analytic) maps. These results, new even for complex manifolds, are applied to obtain a version of Grothendieck-Riemann-Roch, a calculation of Todd classes of toric varieties, and an explicit formula for the number of integral points in a polytope in Euclidean space with integral vertices.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 14F45, 11P21, 14M25, 32S60

Retrieve articles in all journals with MSC (2000): 14F45, 11P21, 14M25, 32S60


Additional Information

DOI: http://dx.doi.org/10.1090/S0273-0979-1994-00436-7
PII: S 0273-0979(1994)00436-7
Article copyright: © Copyright 1994 American Mathematical Society