Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: Lou van den Dries
Title: Tame topology and o-minimal structures
Additional book information: Cambridge Univ. Press, New York, 1998, x + 180 pp., ISBN 0-521-59838-9, $39.95

References [Enhancements On Off] (What's this?)

  • [1] R. Benedetti and J.-J. Risler, Real algebraic and semi-algebraic sets, Hermann, 1990. MR 91j:14045
  • [2] E. Bierstone and P. Milman, Semianalytic and subanalytic sets, IHES Publ. Math 67 (1988), 5-42. MR 89k:32011
  • [3] J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry, Springer Verlag, 1998. MR 2000a:14067
  • [4] L. van den Dries, Remarks on Tarski's problem concerning $(\mathbf{R},+,\cdot,\exp)$, in Logic Colloquium '82, G. Lolli, G. Longo and A. Marcja, eds., North-Holland, 1984, 97-121. MR 86g:03052
  • [5] L. van den Dries, A generalization of the Tarski-Seidenberg theorem, and some nondefinability results, Bull. AMS 15 (1986), 189-193. MR 88b:03048
  • [6] L. van den Dries, A. Macintyre and D. Marker, The elementary theory of restricted analytic fields with exponentiation, Ann. Math 140 (1994), 183-205. MR 95k:12015
  • [7] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540. MR 97i:32008
  • [8] L. van den Dries and P. Speissegger, The real field with convergent generalized power series, Trans. AMS 350 (1998), 4377-4421. MR 99a:03036
  • [9] L. van den Dries and P. Speissegger, The field of reals with multisummable series and the exponential function, Proc. London Math. Soc., to appear.
  • [10] A. Grothendieck, Esquisse d'un Programme, in [17], 5-48. MR 99c:14034
  • [11] A. Khovanskii, On a class of systems of transcendental equations, Sov. Math. Dokl. 2 (1980) 762-765. MR 82a:14006
  • [12] J. Knight, A. Pillay and C. Steinhorn, Definable sets in ordered structures II, Trans. AMS 295 (1986) 593-605. MR 88b:03050b
  • [13] Y. Peterzil and S. Starchenko, A trichotomy theorem for o-minimal structures, Proc. London Math. Soc. 77 (1998), 481-523. MR 2000b:03123
  • [14] Y. Peterzil, A. Pillay and S. Starchenko, Simple algebraic and semialgebraic groups over real closed fields, Trans. AMS, to appear.
  • [15] A. Pillay, On groups and fields definable in o-minimal structures, J. Pure. Appl. Algebra 53 (1988), 239-255. MR 89i:03069
  • [16] A. Pillay and C. Steinhorn, Definable sets in ordered structures I, Trans. AMS 295 (1986), 565-592. MR 88b:03050a
  • [17] L. Schneps and P. Lochak, Geometric Galois Actions: I. Around Grothendieck's Esquisse d'un Programme, Cambridge Univ. Press, 1997. MR 98e:14003
  • [18] P. Speissegger, The Pfaffian closure of an o-minimal structure, J. Reine Angew. Math. 508 (1999), 198-211. CMP 99:09
  • [19] B. Tessier, Tame and stratified objects, in [17], 231-243.
  • [20] A. Wilkie, Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, J. AMS 9 (1996), 1051-1094. MR 98j:03052
  • [21] A. Wilkie, A general theorem of the complement and some new o-minimal structures, preprint, 1996.

Review Information:

Reviewer: David Marker
Affiliation: University of Illinois at Chicago
Email: marker@math.uic.edu
Journal: Bull. Amer. Math. Soc. 37 (2000), 351-357
MSC (2000): Primary 03C64; Secondary 14P10, 14P15
DOI: https://doi.org/10.1090/S0273-0979-00-00866-1
Published electronically: March 2, 2000
Review copyright: © Copyright 2000 American Mathematical Society
American Mathematical Society