Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.

Full text of review: PDF
Book Information:

Author: Melvyn B. Nathanson
Title: Elementary methods in number theory
Additional book information: Springer, New York, 2000, xiii + 513 pp., ISBN 0-38798912-9, $49.95

References [Enhancements On Off] (What's this?)

  • [BDD] Ramachandran Balasubramanian, Jean-Marc Deshouillers, and François Dress, Problème de Waring pour les bicarrés. I. Schéma de la solution, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 4, 85–88 (French, with English summary). MR 853592
    Ramachandran Balasubramanian, Jean-Marc Deshouillers, and François Dress, Problème de Waring pour les bicarrés. II. Résultats auxiliaires pour le théorème asymptotique, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 5, 161–163 (French, with English summary). MR 854724
  • [B] Harald Bohr, A survey of the different proofs of the main theorems in the theory of almost periodic functions, Proceedings of the International Congress of Mathematicians, Cambridge, Mass., 1950, vol. 1, Amer. Math. Soc., Providence, R. I., 1952, pp. 339–348. MR 0045238
  • [Ch] K. Chandrasekharan, Obituary: S. S. Pillai, J. Indian Math. Soc. (N.S.) Part A. 15 (1951), 1–10 (1 plate). MR 0043034
  • [C] Jing-run Chen, Waring’s problem for 𝑔(5)=37, Sci. Sinica 13 (1964), 1547–1568. MR 0200236
  • [Da] Hédi Daboussi, Sur le théorème des nombres premiers, C. R. Acad. Sci. Paris Sér. I Math. 298 (1984), no. 8, 161–164 (French, with English summary). MR 741085
  • [D] L.E. Dickson, The Waring problem and its generalizations, Bulletin of the Amer. Math. Soc., 42 (1936) 833-842.
  • [HR] G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc., 17 (1918) 75-115.
  • [E1] P. Erdös, On an elementary proof of some asymptotic formulas in the theory of partitions, Ann. of Math. (2) 43 (1942), 437–450. MR 0006749
  • [E2] P. Erdös, On a new method in elementary number theory which leads to an elementary proof of the prime number theorem, Proc. Nat. Acad. Sci. U. S. A. 35 (1949), 374–384. MR 0029411
  • [H] D. Hilbert, Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl $n^{ter}$ Potenzen (Waringsches Problem), Math. Annalen, 67 (1909) 281-300.
  • [Hi] Adolf Hildebrand, The prime number theorem via the large sieve, Mathematika 33 (1986), no. 1, 23–30. MR 859495, 10.1112/S002557930001384X
  • [I] A. Ingham, Review of the papers of Selberg and Erdös, Math. Reviews, 10 (1949) 595b, 595c.
  • [M] K. Mahler, On the fractional parts of the powers of a rational number. II, Mathematika 4 (1957), 122–124. MR 0093509
  • [P1] S. Pillai, On Waring's Problem, Journal of Indian Math. Soc.,2 (1936) 16-44.
  • [P2] S. S. Pillai, On Waring’s problem 𝑔(6)=73, Proc. Indian Acad. Sci., Sect. A. 12 (1940), 30–40. MR 0002993
  • [Se] Atle Selberg, An elementary proof of the prime-number theorem, Ann. of Math. (2) 50 (1949), 305–313. MR 0029410
  • [S] Joseph H. Silverman, Wieferich’s criterion and the 𝑎𝑏𝑐-conjecture, J. Number Theory 30 (1988), no. 2, 226–237. MR 961918, 10.1016/0022-314X(88)90019-4
  • [UH] J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill Book Company, Inc., New York, 1939. MR 0000236

Review Information:

Reviewer: M. Ram Murty
Affiliation: Queen’s University
Journal: Bull. Amer. Math. Soc. 38 (2001), 117-121
Published electronically: October 2, 2000
Review copyright: © Copyright 2000 American Mathematical Society