Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

Book Review

The AMS does not provide abstracts of book reviews. You may download the entire review from the links below.


Full text of review: PDF   This review is available free of charge.
Book Information:

Author: M. Gromov
Title: Metric structures for Riemannian and non-Riemannian spaces
Additional book information: Birkhäuser, Boston, 1999, xix + 585 pp., ISBN 0-8176-3898-9, $89.95

References [Enhancements On Off] (What's this?)

  • 1. U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc. 3 (1990), 355-374. MR 91a:53071
  • 2. M. T. Anderson, Convergence and rigidity of manifolds under Ricci curvature bounds, Invent. Math. 102 (1990), 429-445. MR 92c:53024
  • 3. W. Ballmann, M. Gromov, and V. Schroeder, Manifolds of nonpositive curvature, Birkhäuser Boston Inc., Boston, Mass., 1985. MR 87h:53050
  • 4. V. N. Berestovskii, Spaces with bounded curvature and distance geometry, Sibirsk. Mat. Zh. 27 (1986), 11-25. MR 88e:53110
  • 5. M. Berger, Encounter with a geometer. II, Notices Amer. Math. Soc. 47 (2000), 326-340. CMP 2000:08
  • 6. M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, 1999. MR 2000k:53038
  • 7. D. Burago, S. Ferleger, and A. Kononenko, Uniform estimates on the number of collisions in semi-dispersing billiards, Ann. of Math. 147 (1998), 695-708. MR 99f:58120
  • 8. Yu. Burago, M. Gromov, and G. Perel'man, A. D. Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992), 3-51. MR 93m:53035
  • 9. J. Cheeger, Pinching theorems for a certain class of Riemannian manifolds, Amer. J. Math. 91 (1969), 807-834. MR 40:7987
  • 10. -, Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970), 61-74. MR 41:7697
  • 11. -, Critical points of distance functions and applications to geometry, Geometric topology: recent developments (Montecatini Terme, 1990), Springer, Berlin, 1991, pp. 1-38. MR 94a:53075
  • 12. J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. 144 (1996), 189-237. MR 97h:53038
  • 13. -, On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom. 46 (1997), 406-480. MR 98k:53044
  • 14. J. Cheeger, K. Fukaya, and M. Gromov, Nilpotent structures and invariant metrics on collapsed manifolds, J. Amer. Math. Soc. 5 (1992), 327-372. MR 93a:53036
  • 15. J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry 6 (1971/72), 119-128. MR 46:2597
  • 16. S. Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143 (1975), 289-297. MR 51:14170
  • 17. T. H. Colding, Shape of manifolds with positive Ricci curvature, Invent. Math. 124 (1996), 175-191. MR 96k:53067
  • 18. -, Ricci curvature and volume convergence, Ann. of Math. 145 (1997), 477-501. MR 98d:53050
  • 19. -, Spaces with Ricci curvature bounds, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 299-308. MR 99j:53055
  • 20. A. Eskin, Quasi-isometric rigidity of nonuniform lattices in higher rank symmetric spaces, J. Amer. Math. Soc. 11 (1998), 321-361. MR 98g:22005
  • 21. A. Eskin and B. Farb, Quasi-flats and rigidity in higher rank symmetric spaces, J. Amer. Math. Soc. 10 (1997), 653-692. MR 98e:22007
  • 22. F. Fang and X. Rong, Positive pinching, volume and second Betti number, Geom. Funct. Anal. 9 (1999), 641-674. MR 2000k:53030
  • 23. B. Farb and L. Mosher, A rigidity theorem for the solvable Baumslag-Solitar groups, Invent. Math. 131 (1998), 419-451, With an appendix by Daryl Cooper, Quasi-isometric rigidity for the solvable Baumslag-Solitar groups. II, Invent. Math. 137 (1999), 613-649. MR 99b:57003; CMP 2000:01
  • 24. B. Farb and R. Schwartz, The large-scale geometry of Hilbert modular groups, J. Differential Geom. 44 (1996), 435-478. MR 98f:22018
  • 25. S. C. Ferry, A. Ranicki, and J. Rosenberg (eds.), Novikov conjectures, index theorems and rigidity., London Math. Soc. Lecture Notes, vols. 226 and 227, Cambridge University Press, Cambridge (1995). MR 96m:57002; MR 96m:57003
  • 26. K. Fukaya, Hausdorff convergence of Riemannian manifolds and its applications, Recent topics in differential and analytic geometry, Academic Press, Boston, MA, 1990, pp. 143-238. MR 92k:53076
  • 27. K. Fukaya and T. Yamaguchi, The fundamental groups of almost non-negatively curved manifolds, Ann. of Math. 136 (1992), 253-333. MR 93h:53041
  • 28. D. Gabai, Convergence groups are Fuchsian groups, Ann. of Math. 136 (1992), 447-510. MR 93m:20065
  • 29. L. Z. Gao and S.-T. Yau, The existence of negatively Ricci curved metrics on three-manifolds, Invent. Math. 85 (1986), 637-652. MR 87j:53061
  • 30. É. Ghys and P. de la Harpe (eds.), Sur les groupes hyperboliques d'après Mikhael Gromov, Birkhäuser Boston Inc., Boston, MA, 1990, Papers from the Swiss Seminar on Hyperbolic Groups held in Bern, 1988. MR 92f:53050
  • 31. M. Gromov, Almost flat manifolds, J. Differential Geom. 13 (1978), 231-241. MR 80h:53041
  • 32. -, Synthetic geometry in Riemannian manifolds, Proceedings of the International Congress of Mathematicians (Helsinki, 1978) (Helsinki), Acad. Sci. Fennica, 1980, 415-419. MR 81g:53029
  • 33. -, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), 179-195. MR 82k:53062
  • 34. -, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. (1981), 53-73. MR 83b:53041; Appendix MR 83b:53042
  • 35. -, Structures métriques pour les variétés riemanniennes, Edited by J. Lafontaine and P. Pansu, CEDIC, Paris, 1981. MR 85e:53051
  • 36. -, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991), Cambridge Univ. Press, Cambridge, 1993, 1-295. MR 95m:20041
  • 37. -, Carnot-Carathéodory spaces seen from within, Sub-Riemannian geometry, Birkhäuser, Basel, 1996, 79-323. MR 2000f:53034
  • 38. K. Grove, Critical point theory for distance functions, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), Amer. Math. Soc., Providence, RI, 1993, 357-385. MR 94f:53065
  • 39. K. Grove and S. Markvorsen, New extremal problems for the Riemannian recognition program via Alexandrov geometry, J. Amer. Math. Soc. 8 (1995), 1-28. MR 95j:53066
  • 40. K. Grove and P. Petersen, Bounding homotopy types by geometry, Ann. of Math. 128 (1988), 195-206. MR 90a:53044
  • 41. -, Volume comparison à la Aleksandrov, Acta Math. 169 (1992), 131-151. MR 93j:53057
  • 42. K. Grove, P. Petersen, and J.-Y. Wu, Geometric finiteness theorems via controlled topology, Invent. Math. 99 (1990), 205-213. Erratum: Invent. Math. 104 (1991) 221-222. MR 90k:53075; Erratum MR 92b:53065
  • 43. K. Grove and C. Searle, Positively curved manifolds with maximal symmetry-rank, J. Pure Appl. Algebra 91 (1994), 137-142. Differential topological restrictions curvature and symmetry, J. Differential Geom. 47 (1997), 530-559. MR 99h:53043a; correction MR 99h:53043b
  • 44. K. Grove and K. Shiohama, A generalized sphere theorem, Ann. Math. 106 (1977), 201-211. MR 58:18268
  • 45. K. Grove and F. Wilhelm, Hard and soft packing radius theorems, Ann. of Math. 142 (1995), 213-237. Metric constraints on exotic spheres via Alexandrov geometry, J. Reine Angew. Math. 487 (1997), 201-217. MR 96h:53054; MR 98d:53060
  • 46. W.-Y. Hsiang and B. Kleiner, On the topology of positively curved $4$-manifolds with symmetry, J. Differential Geom. 29 (1989), 615-621. MR 90e:53053
  • 47. B. Kleiner and B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings, Inst. Hautes Études Sci. Publ. Math. (1997),115-197 (1998). MR 98m:53068
  • 48. C. Lebrun, Einstein metrics and the Yamabe problem, Trends in mathematical physics (Knoxville, TN, 1998), Amer. Math. Soc., Providence, RI, 1999, 353-376. MR 2000f:53057
  • 49. J. Lohkamp, Metrics of negative Ricci curvature, Ann. of Math. 140 (1994), 655-683. MR 95i:53042
  • 50. V. D. Milman, A new proof of A. Dvoretzky's theorem on cross-sections of convex bodies, Funkcional. Anal. i Prilozen. 5 (1971), 28-37. MR 45:2451
  • 51. -, The heritage of P. Lévy in geometrical functional analysis, Astérisque (1988), no. 157-158, 273-301, Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987). MR 91d:01005
  • 52. I. G. Nikolaev, Smoothness of the metric of spaces with bilaterally bounded curvature in the sense of A. D. Aleksandrov, Sibirsk. Mat. Zh. 24 (1983), 114-132. MR 84h:53098
  • 53. G. Perelman, Elements of Morse theory on Aleksandrov spaces, Algebra i Analiz 5 (1993), 232-241. Spaces with curvature bounded below, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) (Basel), Birkhäuser, 1995, 517-525. MR 94h:53054; MR 97g:53055
  • 54. -, Alexandrov Spaces with curvature bounded below II, Preprint (1992).
  • 55. -, Construction of manifolds of positive Ricci curvature with big volume and large Betti numbers, Comparison geometry (Berkeley, CA, 1993-94), Cambridge Univ. Press, Cambridge, 1997, 157-163. MR 98h:53062
  • 56. P. Petersen, Gromov-Hausdorff convergence of metric spaces, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), Amer. Math. Soc., Providence, RI, 1993, 489-504. MR 94b:53079
  • 57. -, Riemannian geometry, Springer-Verlag, New York, 1998. MR 98m:53001
  • 58. A. Petrunin and W. Tuschmann, Diffeomorphism finiteness, positive pinching, and second homotopy, Geom. Funct. Anal. 9 (1999), 736-774. MR 2000k:53031
  • 59. C. Plaut, A metric characterization of manifolds with boundary, Compositio Math. 81 (1992), 337-354. MR 93c:53032
  • 60. -, Spaces of Wald curvature bounded below, J. Geom. Anal. 6 (1996), 113-134. MR 97j:53043
  • 61. X. Rong, Collapsed manifolds with pinched positive sectional curvature, J. Differential Geom. 51 (1999), 335-358. CMP 2000:05
  • 62. -, Positive curvature, local and global symmetry, and fundamental groups, Amer. J. Math. 121 (1999), 931-943. MR 2000k:53037
  • 63. J. Rosenberg and S. Stolz, Metrics of positive scalar curvature and connections with surgery. Surveys on Surgery Theory, vol. 2, Ann. of Math. Studies, vol. 149, to appear.
  • 64. E. A. Ruh, Almost flat manifolds, J. Differential Geom. 17 (1982), 1-14. MR 84a:53047
  • 65. R. E. Schwartz, The quasi-isometry classification of rank one lattices, Inst. Hautes Études Sci. Publ. Math. (1995), 133-168 (1996). MR 97c:22014
  • 66. -, Quasi-isometric rigidity and Diophantine approximation, Acta Math. 177 (1996), 75-112. MR 97m:53093
  • 67. J.-P. Sha and D.-G. Yang, Examples of manifolds of positive Ricci curvature, J. Differential Geom. 29 (1989), 95-103. MR 90c:53110
  • 68. Y.Shikata, On metrizing differentiable structures, Sûgaku 20 (1968), 75-85. MR 39:967
  • 69. S. Stolz, Positive scalar curvature metrics--existence and classification questions, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), 625-636, Birkhäuser, Basel. MR 98h:53063
  • 70. P. Tukia, On quasiconformal groups, J. Analyse Math. 46 (1986), 318-346. MR 87m:30043
  • 71. T. Yamaguchi, Collapsing and pinching under a lower curvature bound, Ann. of Math. 133 (1991), 317-357. MR 92b:53067

Review Information:

Reviewer: Karsten Grove
Affiliation: University of Maryland
Email: kng@math.umd.edu
Journal: Bull. Amer. Math. Soc. 38 (2001), 353-363
MSC (2000): Primary 53B21, 53C20, 53C21, 53C23, 58D17, 54E35, 51H20, 51H25, 28A78
Published electronically: March 27, 2001
Review copyright: © Copyright 2001 American Mathematical Society
American Mathematical Society