Remote Access Bulletin of the American Mathematical Society

Bulletin of the American Mathematical Society

ISSN 1088-9485(online) ISSN 0273-0979(print)

   
 
 

 

Expander graphs and their applications


Authors: Shlomo Hoory, Nathan Linial and Avi Wigderson
Journal: Bull. Amer. Math. Soc. 43 (2006), 439-561
MSC (2000): Primary 01-01, 68-01, 05-01, 68Q01, 94-01; Secondary 68Q15, 68Q17, 94B05, 05C25, 05C35, 05C40, 05C50, 05C80, 05C90, 60J10, 35J99, 20F05, 20F69, 20C99
DOI: https://doi.org/10.1090/S0273-0979-06-01126-8
Published electronically: August 7, 2006
MathSciNet review: 2247919
Full-text PDF Free Access

References | Similar Articles | Additional Information

References [Enhancements On Off] (What's this?)

  • [ABN92] N. Alon, J. Bruck, J. Naor, M. Naor, and R. M. Roth.
    Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs.
    IEEE Transactions on Information Theory, 38(2):509-516, 1992.
  • [ABSRW04] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and A. Wigderson.
    Pseudorandom generators in propositional proof complexity.
    SIAM J. Comput., 34(1):67-88 (electronic), 2004. MR 2114305 (2006a:03078)
  • [AC89] N. Alon and F. R. K. Chung. Explicit construction of linear sized tolerant networks, Discrete Math., 72:15-19, 1989. MR 0975519 (90f:05080)
  • [AC02] N. Alon and M. Capalbo.
    Explicit unique-neighbor expanders.
    In 43nd IEEE Symposium on Foundations of Computer Science (Vancouver, BC), pages 73-79. IEEE Computer Society, 2002.
  • [AC04] N. Alon and M. Capalbo.
    Smaller explicit superconcentrators.
    Internet Math., 1(2):151-163, 2004. MR 2077222 (2006a:05140)
  • [AFH] O. Angel, J. Friedman, and S. Hoory.
    The non-backtracking spectrum of the universal cover of a graph.
    Manuscript.
  • [AFWZ95] N. Alon, U. Feige, A. Wigderson, and D. Zuckerman.
    Derandomized graph products.
    Comput. Complexity, 5(1):60-75, 1995. MR 1319493 (95m:68082)
  • [AKL79] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rackoff.
    Random walks, universal traversal sequences, and the complexity of maze problems.
    In 20th Annual Symposium on Foundations of Computer Science (San Juan, Puerto Rico, 1979), pages 218-223. IEEE, New York, 1979. MR 0598110 (82h:68084)
  • [AKS83] M. Ajtai, J. Komlós, and E. Szemerédi. An $ O(n\log n)$ sorting network. Combinatorica, 3(1):1-19, 1983.
  • [AKS87] M. Ajtai, J. Komlós, and E. Szemerédi.
    Deterministic simulation in LOGSPACE.
    In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages 132-140, 1987.
  • [AL06] A. Amit and N. Linial.
    Random lifts of graphs II: Edge expansion.
    Combinatorics Probability and Computing, 15:317-332, 2006. MR 2216470
  • [AL96] S. Arora and C. Lund.
    Hardness of approximations.
    In D. S. Hochbaum, editor, Approximation Algorithms for NP-hard Problems. PWS Publishing Company, Boston, MA, 1996.
  • [AL02] A. Amit and N. Linial.
    Random graph coverings. I. General theory and graph connectivity.
    Combinatorica, 22(1):1-18, 2002. MR 1883559 (2003a:05131)
  • [ALM96] S. Arora, F. T. Leighton, and B. M. Maggs.
    On-line algorithms for path selection in a nonblocking network.
    SIAM J. Comput., 25(3):600-625, 1996. MR 1390029 (97b:68014)
  • [ALM98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy.
    Proof verification and the hardness of approximation problems.
    J. ACM, 45(3):501-555, 1998.
    Also in FOCS, 1992. MR 1639346 (99d:68077b)
  • [ALM02] A. Amit, N. Linial, and J. Matoušek.
    Random lifts of graphs: independence and chromatic number.
    Random Structures Algorithms, 20(1):1-22, 2002. MR 1871947 (2003a:05132)
  • [Alo86] N. Alon.
    Eigenvalues and expanders.
    Combinatorica, 6(2):83-96, 1986.
    Theory of Computing (Singer Island, FL, 1984). MR 0875835 (88e:05077)
  • [Alo97] N. Alon.
    On the edge-expansion of graphs.
    Combin. Probab. Comput., 6(2):145-152, 1997. MR 1447810 (98c:05084)
  • [ALW01] N. Alon, A. Lubotzky, and A. Wigderson.
    Semi-direct product in groups and zig-zag product in graphs: connections and applications (extended abstract).
    In 42nd IEEE Symposium on Foundations of Computer Science (Las Vegas, NV, 2001), pages 630-637. IEEE Computer Society, 2001. MR 1948752
  • [AM85] N. Alon and V. D. Milman.
    $ \lambda\sb 1,$ isoperimetric inequalities for graphs, and superconcentrators.
    J. Combin. Theory Ser. B, 38(1):73-88, 1985. MR 0782626 (87b:05092)
  • [AR94] N. Alon and Y. Roichman.
    Random Cayley graphs and expanders.
    Random Structures Algorithms, 5(2):271-284, 1994. MR 1262979 (94k:05132)
  • [AR01] M. Alekhnovich and A. A. Razborov.
    Lower bounds for polynomial calculus: non-binomial case.
    In 42nd IEEE Symposium on Foundations of Computer Science (Las Vegas, NV, 2001), pages 190-199. IEEE Computer Society, 2001. MR 1948707
  • [ARV04] S. Arora, S. Rao, and U. Vazirani.
    Expander flows, geometric embeddings and graph partitioning.
    In Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pages 222-231, 2004. MR 2121604 (2005j:68081)
  • [AS98] S. Arora and S. Safra.
    Probabilistic checking of proofs: a new characterization of NP.
    J. ACM, 45(1):70-122, 1998.
    Also in FOCS, 1992. MR 1614328 (99d:68077a)
  • [AS00] N. Alon and J. H. Spencer.
    The probabilistic method.
    Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience [John Wiley & Sons], New York, second edition, 2000.
    With an appendix on the life and work of Paul Erdos. MR 1885388 (2003f:60003)
  • [BC03] B. Brinkman and M. Charikar.
    On the impossibility of dimension reduction in $ l_1$.
    In 44nd IEEE Symposium on Foundations of Computer Science (Cambridge, MA), pages 514-523. IEEE Computer Society, 2003.
  • [BCCF05] K. Burgin, P. Chebolu, C. Cooper, and A.M. Frieze.
    Hamilton cycles in random lifts of graphs.
    Preprint at http://www.math.cmu.edu/~ af1p/papers.html, 2005.
  • [Bec75] William Beckner.
    Inequalities in Fourier analysis.
    Ann. of Math. (2), 102(1):159-182, 1975. MR 0385456 (52:6317)
  • [BFU99] A. Z. Broder, A. M. Frieze, and E. Upfal.
    Static and dynamic path selection on expander graphs: a random walk approach.
    Random Structures Algorithms, 14(1):87-109, 1999. MR 1662203 (99m:05144)
  • [BH04] Y. Bilu and S. Hoory.
    On codes from hypergraphs.
    European J. Combin., 25(3):339-354, 2004. MR 2036471 (2005d:94200)
  • [BKV81] M. Blum, R. M. Karp, O. Vornberger, C. H. Papadimitriou, and M. Yannakakis.
    The complexity of testing whether a graph is a superconcentrator.
    Inform. Process. Lett., 13(4-5):164-167, 1981. MR 0651465 (84f:68031)
  • [BL] Y. Bilu and N. Linial.
    Lifts, discrepancy and nearly optimal spectral gaps.
    Combinatorica, to appear.
  • [BMRV02] H. Buhrman, P. B. Miltersen, J. Radhakrishnan, and S. Venkatesh.
    Are bitvectors optimal?
    SIAM J. Comput., 31(6):1723-1744 (electronic), 2002. MR 1954872 (2004a:68014)
  • [BOGH03] J. Buresh-Oppenheim, N. Galesi, S. Hoory, A. Magen, and T. Pitassi.
    Rank bounds and integrality gaps for cutting planes procedures.
    In 44nd IEEE Symposium on Foundations of Computer Science (Cambridge, MA, 2003), pages 318-327. IEEE Computer Society, 2003.
  • [Bol86] B. Bollobás.
    Combinatorics.
    Cambridge University Press, Cambridge, 1986.
    Set systems, hypergraphs, families of vectors and combinatorial probability. MR 0866142 (88g:05001)
  • [Bon70] A. Bonami.
    Étude des coefficients de Fourier des fonctions de $ L\sp{p}(G)$.
    Ann. Inst. Fourier (Grenoble), 20(fasc. 2):335-402 (1971), 1970. MR 0283496 (44:727)
  • [Bou85] J. Bourgain.
    On Lipschitz embedding of finite metric spaces in Hilbert space.
    Israel J. Math., 52(1-2):46-52, 1985. MR 0815600 (87b:46017)
  • [BP73] L. A. Bassalygo and M. S. Pinsker.
    The complexity of an optimal non-blocking commutation scheme without reorganization.
    Problemy Peredaci Informacii, 9(1):84-87, 1973.
    Translated into English in Problems of Information Transmission, 9 (1974) 64-66. MR 0327387 (48:5729)
  • [BS87] A. Broder and E. Shamir.
    On the second eigenvalue of random regular graphs.
    In The 28th Annual Symposium on Foundations of Computer Science, pages 286-294, 1987.
  • [BS92] P. Berman and G. Schnitger.
    On the complexity of approximating the independent set problem.
    Inform. and Comput., 96(1):77-94, 1992. MR 1142227 (92k:90110)
  • [BSW01] Eli Ben-Sasson and Avi Wigderson.
    Short proofs are narrow--resolution made simple.
    J. ACM, 48(2):149-169, 2001. MR 1868713 (2002j:03066)
  • [Bus82] P. Buser.
    A note on the isoperimetric constant.
    Ann. Sci. École Norm. Sup. (4), 15(2):213-230, 1982. MR 0683635 (84e:58076)
  • [BZ88] Yu. D. Burago and V. A. Zalgaller.
    Geometric inequalities, volume 285 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
    Springer-Verlag, Berlin, 1988.
    Translated from the Russian by A. B. Sosinski{\u{\i\/}}\kern.15em, Springer Series in Soviet Mathematics. MR 0936419 (89b:52020)
  • [Cam] P. J. Cameron.
    A Markov chain for Steiner triple systems.
    Manuscript.
  • [Car72] P. Cartier.
    Fonctions harmoniques sur un arbre.
    In Symposia Mathematica, Vol. IX (Convegno di Calcolo delle Probabilità, INDAM, Rome, 1971), pages 203-270. Academic Press, London, 1972. MR 0353467 (50:5950)
  • [Che70] J. Cheeger.
    A lower bound for the smallest eigenvalue of the Laplacian.
    In Problems in analysis (Papers dedicated to Salomon Bochner, 1969), pages 195-199. Princeton Univ. Press, Princeton, NJ, 1970. MR 0402831 (53:6645)
  • [Cio06] S. M. Cioaba.
    On the extreme eigenvalues of regular graphs.
    Journal of Combinatorial Theory, Ser. B, 96(3):367-373, 2006. MR 2220665
  • [CKK05] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar.
    On the hardness of approximating multicut and sparsest-cut.
    In IEEE Conference on Computational Complexity, 2005.
  • [CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
    Introduction to algorithms.
    MIT Press, Cambridge, MA, second edition, 2001. MR 1848805 (2002e:68001)
  • [CRVW02] M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson.
    Randomness conductors and constant-degree lossless expanders.
    In Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pages 659-668, 2002. MR 2121193
  • [CT65] J. W. Cooley and J. W. Tukey.
    An algorithm for the machine calculation of complex Fourier series.
    Math. Comp., 19:297-301, 1965. MR 0178586 (31:2843)
  • [DDPW83] D. Dolev, C. Dwork, N. Pippenger, and A. Wigderson.
    Superconcentrators, generalizers and generalized connectors with limited depth.
    In Proceedings of the 15th Annual ACM Symposium on Theory of Computing, pages 42-51, 1983.
  • [Die97] R. Diestel.
    Graph theory, volume 173 of Graduate Texts in Mathematics.
    Springer-Verlag, New York, 1997.
    Translated from the 1996 German original. MR 1411445
  • [DL] Y. Drier and N. Linial.
    Minors in lifts of graphs.
    Random Structures and Algorithms, to appear.
  • [DL97] M. M. Deza and M. Laurent.
    Geometry of cuts and metrics, volume 15 of Algorithms and Combinatorics.
    Springer-Verlag, Berlin, 1997. MR 1460488 (98g:52001)
  • [Dod84] J. Dodziuk.
    Difference equations, isoperimetric inequality and transience of certain random walks.
    Trans. Amer. Math. Soc., 284(2):787-794, 1984. MR 0743744 (85m:58185)
  • [DSV03] G. Davidoff, P. Sarnak, and A. Valette.
    Elementary number theory, group theory, and Ramanujan graphs, volume 55 of London Mathematical Society Student Texts.
    Cambridge University Press, Cambridge, 2003. MR 1989434 (2004f:11001)
  • [ER59] P. Erdos and A. Rényi.
    On random graphs. I.
    Publ. Math. Debrecen, 6:290-297, 1959. MR 0120167 (22:10924)
  • [Fel68] W. Feller.
    An introduction to probability theory and its applications. Vol. I.
    Third edition. John Wiley & Sons Inc., New York, 1968. MR 0228020 (37:3604)
  • [FGL91] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy.
    Approximating clique is almost np-complete.
    In 32nd IEEE Symposium on Foundations of Computer Science, pages 2-12. IEEE Computer Society, 1991.
  • [FK81] Z. Füredi and J. Komlós.
    The eigenvalues of random symmetric matrices.
    Combinatorica, 1(3):233-241, 1981. MR 0637828 (83e:15010)
  • [FKS89] J. Friedman, J. Kahn, and E. Szemeredi.
    On the second eigenvalue of random regular graphs.
    In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pages 587-598, 1989.
  • [Fri] J. Friedman.
    A proof of Alon's second eigenvalue conjecture.
    Memoirs of the A.M.S., to appear.
  • [Fri91] J. Friedman.
    The spectra of infinite hypertrees.
    SIAM J. Comput., 20(5):951-961, 1991. MR 1115660 (92k:05096)
  • [Fri93] J. Friedman.
    Some geometric aspects of graphs and their eigenfunctions.
    Duke Math. J., 69(3):487-525, 1993. MR 1208809 (94b:05134)
  • [Fri03] J. Friedman.
    Relative expanders or weakly relatively Ramanujan graphs.
    Duke Math. J., 118(1):19-35, 2003. MR 1978881 (2004m:05165)
  • [FW95] Joel Friedman and Avi Wigderson.
    On the second eigenvalue of hypergraphs.
    Combinatorica, 15(1):43-65, 1995. MR 1325271 (96b:05110)
  • [Gal63] R. G. Gallager.
    Low Density Parity Check Codes.
    MIT Press, Cambridge, MA, 1963. MR 0136009 (24:B2048)
  • [GG81] O. Gabber and Z. Galil.
    Explicit constructions of linear-sized superconcentrators.
    J. Comput. System Sci., 22(3):407-420, 1981.
    Special issue dedicated to Michael Machtey. MR 0633542 (83d:94029)
  • [Gil98] D. Gillman.
    A Chernoff bound for random walks on expander graphs.
    SIAM J. Comput., 27(4):1203-1220 (electronic), 1998. MR 1621958 (99e:60076)
  • [GLS93] M. Grötschel, L. Lovász, and A. Schrijver.
    Geometric algorithms and combinatorial optimization, volume 2 of Algorithms and Combinatorics.
    Springer-Verlag, Berlin, second edition, 1993. MR 1261419 (95e:90001)
  • [Gol97] O. Goldreich.
    A sample of samplers - a computational perspective on sampling (survey).
    Technical Report TR97-020, Electronic Colloquium on Computational Complexity (ECCC), 1997.
    http://www.eccc.uni-trier.de/eccc/.
  • [Gra05] A. Granville.
    It is easy to determine whether a given integer is prime.
    Bull. Amer. Math. Soc. (N.S.), 42(1):3-38 (electronic), 2005. MR 2115065 (2005k:11011)
  • [Gre95] Y. Greenberg.
    On the Spectrum of Graphs and Their Universal Covering.
    PhD thesis, Hebrew University of Jerusalem, 1995
    (in Hebrew).
  • [Gro77] J. L. Gross.
    Every connected regular graph of even degree is a Schreier coset graph.
    J. Combinatorial Theory Ser. B, 22(3):227-232, 1977. MR 0450121 (56:8419)
  • [Gro83] M. Gromov.
    Filling Riemannian manifolds.
    J. Differential Geom., 18(1):1-147, 1983. MR 0697984 (85h:53029)
  • [Gro03] M. Gromov.
    Random walk in random groups.
    Geom. Funct. Anal., 13(1):73-146, 2003. MR 1978492 (2004j:20088a)
  • [Hås99] J. Håstad.
    Clique is hard to approximate within $ n\sp {1-\epsilon}$.
    Acta Math., 182(1):105-142, 1999. MR 1687331 (2000j:68062)
  • [H50] R. Hamming, Error detecting and error correcting codes, Bell System Technical Journal, 29:147-160, 1950. MR 0035935 (12:35c)
  • [HMP06] S. Hoory, A. Magen, and T. Pitassi.
    Monotone circuits for the majority function. 10th International Workshop on Randomization and Computation (RANDOM), 2006.
  • [Hoo02] S. Hoory.
    On graphs of high girth.
    PhD thesis, Hebrew University of Jerusalem, 2002.
  • [Hoo05] S. Hoory.
    A lower bound on the spectral radius of the universal cover of a graph.
    J. Combin. Theory Ser. B, 93(1):33-43, 2005. MR 2102266 (2005k:05144)
  • [IM04] P. Indyk and J. Matoušek.
    Low-distortion embeddings of finite metric spaces.
    In Jacob E. Goodman and Joseph O'Rourke, editors, Handbook of discrete and computational geometry, Discrete Mathematics and Its Applications (Boca Raton), pages 177-196. Chapman & Hall/CRC, Boca Raton, FL, second edition, 2004.
  • [INW94] R. Impagliazzo, N. Nisan, and A. Wigderson.
    Pseudorandomness for network algorithms.
    In Proceedings of the 26th Annual ACM Symposium on Theory of Computing, pages 356-364, 1994.
  • [Jer03] M. Jerrum.
    Counting, sampling and integrating: algorithms and complexity.
    Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2003. MR 1960003 (2004a:68044)
  • [JL84] W. B. Johnson and J. Lindenstrauss.
    Extensions of Lipschitz mappings into a Hilbert space.
    In Conference in modern analysis and probability (New Haven, CT, 1982), volume 26 of Contemp. Math., pages 189-206. Amer. Math. Soc., Providence, RI, 1984. MR 0737400 (86a:46018)
  • [J\LR00] S. Janson, T. \Luczak, and A. Rucinski.
    Random graphs.
    Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience, New York, 2000. MR 1782847 (2001k:05180)
  • [JM87] S. Jimbo and A. Maruoka.
    Expanders obtained from affine transformations.
    Combinatorica, 7(4):343-355, 1987. MR 0931192 (89d:68071)
  • [JS89] M. Jerrum and A. Sinclair.
    Approximate counting, uniform generation and rapidly mixing Markov chains.
    Inform. and Comput., 82(1):93-133, 1989. MR 1003059 (91g:68084)
  • [JS96] M. Jerrum and A. Sinclair.
    The Markov chain Monte Carlo method: an approach to approximate counting and integration.
    In D. S. Hochbaum, editor, Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston, MA, 1996.
  • [JSV04] M. Jerrum, A. Sinclair, and E. Vigoda.
    A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries.
    J. ACM, 51(4):671-697 (electronic), 2004. MR 2147852 (2006b:15013)
  • [Kah95] N. Kahale.
    Eigenvalues and expansion of regular graphs.
    J. Assoc. Comput. Mach., 42(5):1091-1106, 1995. MR 1412045 (97f:68149)
  • [Kar72] R. M. Karp.
    Reducibility among combinatorial problems.
    In Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, 1972), pages 85-103. Plenum, New York, 1972. MR 0378476 (51:14644)
  • [Kas05a] M. Kassabov.
    Kazhdan constants for $ SL_n(Z)$. International Journal of Algebra and Computation, 15(5-6), 971-995, 2005. MR 2197816
  • [Kas05b] M. Kassabov.
    Symmetric groups and expander graphs. http://www.arxiv.org/abs/ math.GR/0505624, 2005.
  • [Kaz67] D. A. Kazhdan.
    On a connection between the dual space of a group and the structure of its closed subgroups.
    Func. Anal. Appl., 1:63-65, 1967.
  • [KKL88] J. Kahn, G. Kalai, and N. Linial.
    The influence of variables on boolean functions.
    In 29th IEEE Symposium on Foundations of Computer Science (White Planes), pages 68-80. IEEE Computer Society, 1988.
  • [KLN05] M. Kassabov, A. Lubotzky, and N. Nikolov.
    Finite simple groups as expanders.
    http://www.arxiv.org/abs/math.GR/0510562, 2005.
  • [Kör89] T. W. Körner.
    Fourier analysis.
    Cambridge University Press, Cambridge, second edition, 1989. MR 1035216 (90j:42001)
  • [KPS85] R. Karp, N. Pippenger, and M. Sipser.
    A time-randomness tradeoff.
    In AMS Conference on Probabilistic Computational Complexity, 1985.
  • [KV05] S. Khot and N. Vishnoi.
    The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into l1.
    In The 46th Annual Symposium on Foundations of Computer Science, 2005.
  • [Lin02] N. Linial.
    Finite metric-spaces--combinatorics, geometry and algorithms.
    In Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002), pages 573-586, Beijing, 2002. Higher Ed. Press. MR 1957562 (2003k:05045)
  • [LL06] N. Linial and E. London.
    On the expansion rate of Margulis expanders. Journal of Combinatorial Theory, Ser. B, 96(3):436-442, 2006. MR 2220670
  • [LLR95] N. Linial, E. London, and Y. Rabinovich.
    The geometry of graphs and some of its algorithmic applications.
    Combinatorica, 15(2):215-245, 1995. MR 1337355 (96e:05158)
  • [LM00] N. Linial and A. Magen.
    Least-distortion Euclidean embeddings of graphs: products of cycles and expanders.
    J. Combin. Theory Ser. B, 79(2):157-171, 2000. MR 1769197 (2002c:05062)
  • [LMN02] N. Linial, A. Magen, and A. Naor.
    Girth and Euclidean distortion.
    Geom. Funct. Anal., 12(2):380-394, 2002. MR 1911665 (2003d:05054)
  • [LMSS01] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman.
    Improved low-density parity-check codes using irregular graphs.
    IEEE Trans. Inform. Theory, 47(2):585-598, 2001. MR 1820478 (2002h:94115)
  • [LN98] A. Lubotzky and T. Nagnibeda.
    Not every uniform tree covers Ramanujan graphs.
    J. Combin. Theory Ser. B, 74(2):202-212, 1998. MR 1654133 (2000g:05052)
  • [LN04] J. R. Lee and A. Naor.
    Embedding the diamond graph in $ L\sb p$ and dimension reduction in $ L\sb 1$.
    Geom. Funct. Anal., 14(4):745-747, 2004. MR 2084978 (2005g:46035)
  • [Lok01] S. V. Lokam.
    Spectral methods for matrix rigidity with applications to size-depth trade-offs and communication complexity.
    J. Comput. System Sci., 63(3):449-473, 2001. MR 1892859 (2003a:68059)
  • [Lov93] L. Lovász.
    Combinatorial problems and exercises.
    North-Holland Publishing Co., Amsterdam, second edition, 1993. MR 1265492 (94m:05001)
  • [LPS88] A. Lubotzky, R. Phillips, and P. Sarnak.
    Ramanujan graphs.
    Combinatorica, 8(3):261-277, 1988. MR 0963118 (89m:05099)
  • [LR99] T. Leighton and S. Rao.
    Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms.
    J. ACM, 46(6):787-832, 1999. MR 1753034 (2001e:05125)
  • [LR05] N. Linial and E. Rozenman.
    Random lifts of graphs: perfect matchings.
    Combinatorica, 25(4):407-424, 2005. MR 2143247 (2006c:05110)
  • [LSV05] Alexander Lubotzky, Beth Samuels, and Uzi Vishne.
    Explicit constructions of Ramanujan complexes of type $ A\sb d$.
    European J. Combin., 26(6):965-993, 2005. MR 2143204 (2006g:20043)
  • [Lub] A. Lubotzky.
    Finite simple groups of lie type as expanders.
    In preparation.
  • [Lub94] A. Lubotzky.
    Discrete groups, expanding graphs and invariant measures, volume 125 of Progress in Mathematics.
    Birkhäuser Verlag, Basel, 1994.
    With an appendix by Jonathan D. Rogawski. MR 1308046 (96g:22018)
  • [LW93] A. Lubotzky and B. Weiss.
    Groups and expanders.
    In Expanding graphs (Princeton, NJ, 1992), volume 10 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 95-109. Amer. Math. Soc., Providence, RI, 1993. MR 1235570 (95b:05097)
  • [LW98] L. Lovász and P. Winkler.
    Mixing times.
    In Microsurveys in discrete probability (Princeton, NJ, 1997), volume 41 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 85-133. Amer. Math. Soc., Providence, RI, 1998. MR 1630411 (99h:60138)
  • [LZ] A. Lubotzky and A. Zuk.
    On property (t).
    In preparation.
  • [Mar73] G. A. Margulis.
    Explicit constructions of expanders.
    Problemy Peredaci Informacii, 9(4):71-80, 1973. MR 0484767 (58:4643)
  • [Mar82] G. A. Margulis.
    Explicit constructions of graphs without short cycles and low density codes.
    Combinatorica, 2(1):71-78, 1982. MR 0671147 (83j:05053)
  • [Mar88] G. A. Margulis.
    Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators.
    Problems of Information Transmission, 24(1):39-46, 1988. MR 0939574 (89f:68054)
  • [Mat02] J. Matoušek.
    Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics.
    Springer-Verlag, New York, 2002. MR 1899299 (2003f:52011)
  • [McK81] B. D. McKay.
    The expected eigenvalue distribution of a large regular graph.
    Linear Algebra Appl., 40:203-216, 1981. MR 0629617 (84h:05089)
  • [Mor94] M. Morgenstern.
    Existence and explicit constructions of $ q+1$ regular Ramanujan graphs for every prime power $ q$.
    J. Combin. Theory Ser. B, 62(1):44-62, 1994. MR 1290630 (95h:05089)
  • [MR95] R. Motwani and P. Raghavan.
    Randomized algorithms.
    Cambridge University Press, Cambridge, 1995. MR 1344451 (96i:65003)
  • [MR00] R. A. Martin and D. Randall.
    Sampling adsorbing staircase walks using a new Markov chain decomposition method.
    In 41st Annual Symposium on Foundations of Computer Science (Redondo Beach, CA, 2000), pages 492-502. IEEE Comput. Soc. Press, Los Alamitos, CA, 2000. MR 1931846
  • [MRRW77] R. J. McEliece, E. R. Rodemich, H. Rumsey, Jr., and L. R. Welch.
    New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities.
    IEEE Trans. Information Theory, IT-23(2):157-166, 1977. MR 0439403 (55:12296)
  • [MS77a] F. J. MacWilliams and N. J. A. Sloane.
    The theory of error-correcting codes. I.
    North-Holland Publishing Co., Amsterdam, 1977.
    North-Holland Mathematical Library, Vol. 16. MR 0465509 (57:5408a)
  • [MS77b] F. J. MacWilliams and N. J. A. Sloane.
    The theory of error-correcting codes. II.
    North-Holland Publishing Co., Amsterdam, 1977.
    North-Holland Mathematical Library, Vol. 16. MR 0465510 (57:5408b)
  • [MS86] V. D. Milman and G. Schechtman.
    Asymptotic theory of finite-dimensional normed spaces, volume 1200 of Lecture Notes in Mathematics.
    Springer-Verlag, Berlin, 1986.
    With an appendix by M. Gromov. MR 0856576 (87m:46038)
  • [MT] R. Montenegro and P. Tetali.
    A primer on modern techniques for bounding mixing times.
    Preprint at http://www.math.gatech.edu/%7Etetali/RESEARCH/pubs.html.
  • [MW02] R. Meshulam and A. Wigderson.
    Expanders from symmetric codes.
    In Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, pages 669-677, 2002. MR 2121194
  • [Nik05] N. Nikolov.
    A product decomposition for the classical quasisimple groups.
    http://www.arxiv.org/abs/math.GR/0510173, 2005.
  • [Nil91] A. Nilli.
    On the second eigenvalue of a graph.
    Discrete Math., 91(2):207-210, 1991. MR 1124768 (92j:05124)
  • [Nil04] A. Nilli.
    Tight estimates for eigenvalues of regular graphs.
    Electron. J. Combin., 11:N9, 4 pp. (electronic), 2004. MR 2056091
  • [Nov02] T. Novikoff.
    Asymptotic behavior of the random 3-regular bipartite graph.
    Preprint, 2002.
  • [NZ96] Noam Nisan and David Zuckerman.
    Randomness is linear in space.
    J. Comput. System Sci., 52(1):43-52, 1996. MR 1375803 (97c:68050)
  • [Pap94] C. H. Papadimitriou.
    Computational complexity.
    Addison-Wesley Publishing Company, Reading, MA, 1994. MR 1251285 (95f:68082)
  • [Pin73] M. S. Pinsker.
    On the complexity of a concentrator.
    In 7th International Telegraffic Conference, pages 318/1-318/4, 1973.
  • [PU89] D. Peleg and E. Upfal.
    Constructing disjoint paths on expander graphs.
    Combinatorica, 9(3):289-313, 1989. MR 1030383 (91h:05115)
  • [Rab80] M. O. Rabin.
    Probabilistic algorithm for testing primality.
    J. Number Theory, 12(1):128-138, 1980. MR 0566880 (81f:10003)
  • [Rei05] O. Reingold.
    Undirected st-connectivity in log-space.
    In Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages 376-385, 2005. MR 2181639 (2006g:68118)
  • [Roi96] Y. Roichman.
    Upper bound on the characters of the symmetric groups.
    Invent. Math., 125(3):451-485, 1996. MR 1400314 (97e:20014)
  • [RS03] R. Raz and A. Shpilka.
    Lower bounds for matrix product in bounded depth circuits with arbitrary gates.
    SIAM J. Comput., 32(2):488-513 (electronic), 2003. MR 1969401 (2004d:68052)
  • [RSU01] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke.
    Design of capacity-approaching irregular low-density parity-check codes.
    IEEE Trans. Inform. Theory, 47(2):619-637, 2001. MR 1820480 (2002d:94068)
  • [RSW04] E. Rozenman, A. Shalev, and A. Wigderson.
    A new family of Cayley expanders (?).
    In Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pages 445-454, 2004. MR 2121630 (2005j:68120)
  • [RTV05] O. Reingold, L. Trevisan, and S. Vadhan.
    Pseudorandom walks in biregular graphs and the RL vs. L problem.
    Technical Report TR05-022, Electronic Colloquium on Computational Complexity (ECCC), 2005.
    http://www.eccc.uni-trier.de/eccc/.
  • [RU] T. Richardson and R. Urbanke.
    Modern coding theory.
    Draft of the book, http://lthcwww.epfl.ch/mct/index.php.
  • [RU01] T. J. Richardson and R. L. Urbanke.
    The capacity of low-density parity-check codes under message-passing decoding.
    IEEE Trans. Inform. Theory, 47(2):599-618, 2001. MR 1820479 (2002c:94048)
  • [Rud91] W. Rudin.
    Functional analysis.
    International Series in Pure and Applied Mathematics. McGraw-Hill Inc., New York, second edition, 1991. MR 1157815 (92k:46001)
  • [RV05] E. Rozenman and S. Vadhan.
    Derandomized squaring of graphs.
    In Proceedings of the 8th International Workshop on Randomization and Computation (RANDOM), volume 3624 of Lecture Notes in Computer Science, pages 436-447, 2005. MR 2193707
  • [RVW02] O. Reingold, S. Vadhan, and A. Wigderson.
    Entropy waves, the zig-zag graph product, and new constant-degree expanders.
    Ann. of Math. (2), 155(1):157-187, 2002. MR 1888797 (2003c:05145)
  • [Sar04] P. Sarnak.
    What is$ \dots$an expander?
    Notices Amer. Math. Soc., 51(7):762-763, 2004. MR 2072849
  • [Ser77] J.-P. Serre.
    Linear representations of finite groups.
    Springer-Verlag, New York, 1977.
    Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, Vol. 42. MR 0450380 (56:8675)
  • [Sha48] C. E. Shannon.
    A mathematical theory of communication.
    Bell System Tech. J., 27:379-423, 623-656, 1948. MR 0026286 (10:133e)
  • [Sha99] Y. Shalom.
    Bounded generation and Kazhdan's property (T).
    Inst. Hautes Études Sci. Publ. Math., 90:145-168 (2001), 1999. MR 1813225 (2001m:22030)
  • [Sha04] R. Shaltiel.
    Recent developments in extractors.
    In G. Paun, G. Rozenberg, and A. Salomaa, editors, Current trends in theoretical computer science, volume 1: Algorithms and Complexity. World Scientific Publishing Co., 2004. MR 2193911
  • [Sie] A. Siegel.
    A historical review of the isoperimetric theorem in 2-d, and its place in elementary plane geometry.
    http://www.cs.nyu.edu/faculty/siegel/SCIAM.pdf.
  • [Sim03] M. Simonovits.
    How to compute the volume in high dimension?
    Math. Program., 97(1-2, Ser. B):337-374, 2003.
    ISMP, 2003 (Copenhagen). MR 2004402 (2004j:68194)
  • [Sip97] M. Sipser.
    Introduction to the Theory of Computation.
    PWS Publishing Company, 1997.
  • [Spi96] D. A. Spielman.
    Linear-time encodable and decodable error-correcting codes.
    IEEE Trans. Inform. Theory, 42(6, part 1):1723-1731, 1996.
    Codes and complexity. MR 1465732 (98g:94034)
  • [SS77] R. Solovay and V. Strassen.
    A fast Monte-Carlo test for primality.
    SIAM J. Comput., 6(1):84-85, 1977. MR 0429721 (55:2732)
  • [SS96] M. Sipser and D. A. Spielman.
    Expander codes.
    IEEE Trans. Inform. Theory, 42(6, part 1):1710-1722, 1996.
    Codes and complexity. MR 1465731 (98d:94031)
  • [ST] H. Stark and A. Terras.
    Zeta functions of finite graphs and coverings, part iii. Advances in Mathematics, to appear.
  • [Sud00] M. Sudan.
    A crash course on coding theory.
    http://theory.lcs.mit.edu/ ~madhu/coding/ibm/, 2000.
  • [Sud04] M. Sudan.
    Probabilistically checkable proofs.
    In Computational complexity theory, volume 10 of IAS/Park City Math. Ser., pages 349-389. Amer. Math. Soc., Providence, RI, 2004. MR 2089735
  • [Tan81] R. M. Tanner.
    A recursive approach to low complexity codes.
    IEEE Trans. Inform. Theory, 27(5):533-547, 1981. MR 0650686 (83i:94017)
  • [Tan84] R. M. Tanner.
    Explicit concentrators from generalized $ N$-gons.
    SIAM J. Algebraic Discrete Methods, 5(3):287-293, 1984. MR 0752035 (85k:68080)
  • [Tho03] J. Thorpe.
    Low-Density Parity-Check codes constructed from protographs.
    In The Interplanetary Network Progress Report 42-154, Jet Propulsion Laboratory, Pasadena, CA, pages 1-7, 2003.
  • [TW96] C. A. Tracy and H. Widom.
    On orthogonal and symplectic matrix ensembles.
    Comm. Math. Phys., 177(3):727-754, 1996. MR 1385083 (97a:82055)
  • [UW87] E. Upfal and A. Wigderson.
    How to share memory in a distributed system.
    J. Assoc. Comput. Mach., 34(1):116-127, 1987. MR 0882664 (88c:68009)
  • [Val76] L. G. Valiant.
    Graph-theoretic properties in computational complexity.
    J. Comput. System Sci., 13(3):278-285, 1976.
    Working papers presented at the ACM-SIGACT Symposium on the Theory of Computing (Albuquerque, NM, 1975). MR 0441008 (55:13874)
  • [Val03] A. Valette.
    On the Baum-Connes assembly map for discrete groups.
    In Proper group actions and the Baum-Connes conjecture, Adv. Courses Math. CRM Barcelona, pages 79-124. Birkhäuser, Basel, 2003.
    With an appendix by Dan Kucerovsky. MR 2027170 (2005d:19008)
  • [vL99] J. H. van Lint.
    Introduction to coding theory, volume 86 of Graduate Texts in Mathematics.
    Springer-Verlag, Berlin, third edition, 1999. MR 1664228 (2000a:94001)
  • [vLW01] J. H. van Lint and R. M. Wilson.
    A course in combinatorics.
    Cambridge University Press, Cambridge, second edition, 2001. MR 1871828 (2002i:05001)
  • [Vu05] V. H. Vu.
    Spectral norm of random matrices.
    In Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages 423-430, 2005. MR 2181644 (Review)
  • [Wig58] E. P. Wigner.
    On the distribution of the roots of certain symmetric matrices.
    Ann. of Math. (2), 67:325-327, 1958. MR 0095527 (20:2029)
  • [Wig06] A. Wigderson.
    P, NP and mathematics - a computational complexity perspective.
    In Proc. of the 2006 International Congress of Mathematicians. Madrid, August 2006.
    Preprint at http://www.math.ias.edu/~ avi/PUBLICATIONS/MYPAPERS/W06/W06.pdf.
  • [Wor99] N. C. Wormald.
    Models of random regular graphs.
    In Surveys in combinatorics, 1999 (Canterbury), volume 267 of London Math. Soc. Lecture Note Ser., pages 239-298. Cambridge Univ. Press, Cambridge, 1999.
    Corrections and addenda at http://www.math.uwaterloo.ca/~nwormald/papers/regcorrs. MR 1725006 (2000j:05114)
  • [WZ93] A. Wigderson and D. Zuckerman, Expanders that beat the eigenvalue bound: explicit contruction and applications, Combinatorica, 19(1):125-138, 1999. MR 1722214 (2000j:05081)
  • [Zuc05] D. Zuckerman.
    Linear degree extractors and inapproximability of MAX-CLIQUE and chromatic number.
    Manuscript, 2005.

Similar Articles

Retrieve articles in Bulletin of the American Mathematical Society with MSC (2000): 01-01, 68-01, 05-01, 68Q01, 94-01, 68Q15, 68Q17, 94B05, 05C25, 05C35, 05C40, 05C50, 05C80, 05C90, 60J10, 35J99, 20F05, 20F69, 20C99

Retrieve articles in all journals with MSC (2000): 01-01, 68-01, 05-01, 68Q01, 94-01, 68Q15, 68Q17, 94B05, 05C25, 05C35, 05C40, 05C50, 05C80, 05C90, 60J10, 35J99, 20F05, 20F69, 20C99


Additional Information

Shlomo Hoory
Affiliation: IBM Research Laboratory, Haifa, Israel
Email: shlomoh@il.ibm.com

Nathan Linial
Affiliation: The Hebrew University, Jerusalem, Israel
Email: nati@cs.huji.ac.il

Avi Wigderson
Affiliation: Institute of Advanced Study, Princeton, New Jersey 08544
Email: avi@ias.edu

DOI: https://doi.org/10.1090/S0273-0979-06-01126-8
Received by editor(s): April 28, 2006
Received by editor(s) in revised form: May 10, 2006
Published electronically: August 7, 2006
Additional Notes: Work supported in part by grants from the Israel Science Foundation and the Israel-U.S. Binational Fund
Article copyright: © Copyright 2006 S. Hoory, N. Linial, and A. Wigderson

American Mathematical Society